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There are Two Main Strategies

� Confirmation
� Confirm everything you believe to be true
� Find the thing that is not actually true
� In worse case, have to look at every line of code

� Binary Search
� Identify where the code is working properly
� Identify where the code is not working properly
� Limit confirmation to the space in between
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Everything else is a fancy tool to do this



� Access errors are the hardest
� Refer to object in memory
� Object is deleted somehow
� Refer to attribute of object
� May/may not cause crash 

� Remember the 1110 rule
� Error found != error cause
� Cause is somewhere before

� Must work up the call stack
� Part of the binary search

The Challenge of Finding Errors
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The Challenge of Finding Errors

� “Deletion” is not immediate
� Marks it for deletion
� Will be deleted later

� Can still access object
� Data corrupted as recycled
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Primitive Confirmation Tools

� Logging (CULog)
� Print out a variable value to check it
� Alternatively print out a trace of program flow
� Goal: View the internal program state

� Assertions (CUAssert)
� Check that your assumption is true
� Crash the code if it is not
� Goal: Make error closer to the crash



Primitive Confirmation Tools

� CULog(statement, v1, v2, v3…)
� Uses same syntax as printf()
� Need to use char* to display string names
� Ex: CULog("Node is %s", node->getName().c_str())

� CUAssert(test, statement, v1, v2, v3…)
� Test is any boolean statement
� Remainder of arguments act like printf()
� Ex: CUAssert(index > 0, "index is %d", index)



Problems with Logging

� Verbose
� Code with print every animation frame
� Way too much information to sort through
� Most game designers will log to a file

� Distortionary
� Logging and other I/O is a blocking operation
� Will change the thread behavior of your app
� Can cause errors to appear/disappear



Advanced Tools

� Breakpoints
� Stop the execution of the code
� Can continue running from that point
� Can continue one step at a time

� Watches
� Look at the value of an individual variable
� Can drill down into object attributes
� But only works when variable is in scope



Advanced Tools

� Memory Dumps
� Look at a raw memory location 
� Does not require a variable to be in scope
� Good way to look at heap for corruption

� Thread Monitors
� Stack traces for all running threads
� All threads are frozen by a breakpoint
� Allows you to compare state across threads



XCode Tools
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Breakpoint Strategies

� Break early
� Break before the error, to check everything is okay
� Step forward and watch how the code changes

� Break infrequently
� If you always break, cannot initialize or animate anything
� Design special conditionals for your breakpoint

� Break on deletion
� Put breakpoints inside of all your destructors
� Allows you to track accidental deletion



Problems with Code Stepping

� Code stepping is not “thread safe”
� Will never leave your current thread
� Have to choose “continue” instead of “step”

� Makes it very difficult to find thread errors
� May miss when a variable changes state
� We had many problems in an old AudioEngine

� Solution: Rely heavily on assertions
� Assert every variable shared across threads
� Assert them everywhere they may change



Case Study: JSON Loading

� Problem in Cocos2d-x, an older engine
� Not a C++11 compliant engine
� Did not support smart pointers (or anything)
� Instead all game objects had reference counting

� Manual reference counting leads to mistakes
� Only slightly better than manual deletion
� Even Apple has abandoned this in Objective-C

� But very instructive for debugging memory



� Every object has a counter
� Tracks number of “owners” 
� No owners = memory leak 
� Increment when get reference 

� Often an explicit method call
� Historically called retain() 

� Decrement when reference lost
� Method call is release()
� If makes count 0, delete it 

Aside: Reference Counting 

Ref 1 Ref 2

Object
Count =2



Scene Graphs the Old Way

// create a new instance
Node* node = Node::create();
node->retain();

// Add the node to scene graph
scene->addChild(node);

// Release the local reference
node->release();

// Remove from scene graph
scene->removeChild(node);

Raw pointers!!

Manual refence counts!!
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Scene Graphs the Old Way

// create a new instance
Node* node = Node::create();
node->retain();

// Add the node to scene graph
scene->addChild(node);

// Do not release the local reference

// Remove from scene graph
scene->removeChild(node);
.

Custom allocator

Reference count 1

Reference count 2

Reference count 1

Memory Leak!



Case Study: JSON Loading

� Problem was a thread race condition
� Appeared on Windows, but not MacOS
� Because of particular Windows thread schedule
� But technically unsafe on all platforms

� Found by putting breakpoints in destructors
� Models getting deleted immediately after creation
� Watched the reference counts to find problem
� There was a stray release() before retain()



Case Study: b2BlockAllocator

� Memory address problem in Box2D engine
� Problem was because we put Box2D in a DLL
� Required stepping through the allocation process
� Required memory dumps to view the heap

� Problem with the static global variables
� DLLs have a distinct global space
� BlockAllocator was initialized inside of the DLL
� When it was used outside the DLL, not initialized



Summary

� Two main strategies to debugging
� Confirmation: Make sure code does what you think
� Binary Search: Find where confirmation wrong

� Primitive tools in code on all platforms
� Logging with CULog
� Assertions with CUAssert

� Advanced tools in professional IDEs
� Breakpoints and Watches
� Thread Monitors (to see call stack)
� Memory Dumps


