
gamedesigninitiative
at cornell university

the

Debugging 
Strategies



There are Two Main Strategies

� Confirmation
� Confirm everything you believe to be true
� Find the thing that is not actually true
� In worse case, have to look at every line of code

� Binary Search
� Identify where the code is working properly
� Identify where the code is not working properly
� Limit confirmation to the space in between



There are Two Main Strategies

� Confirmation
� Confirm everything you believe to be true
� Find the thing that is not actually true
� In worse case, have to look at every line of code

� Binary Search
� Identify where the code is working properly
� Identify where the code is not working properly
� Limit confirmation to the space in between

Everything else is a fancy tool to do this



� Access errors are the hardest
� Refer to object in memory
� Object is deleted somehow
� Refer to attribute of object
� May/may not cause crash 

� Remember the 1110 rule
� Error found != error cause
� Cause is somewhere before

� Must work up the call stack
� Part of the binary search

The Challenge of Finding Errors

ref blah
blah
blah
blah
blah

blah
blah

blah
blah



� Access errors are the hardest
� Refer to object in memory
� Object is deleted somehow
� Refer to attribute of object
� May/may not cause crash 

� Remember the 1110 rule
� Error found != error cause
� Cause is somewhere before

� Must work up the call stack
� Part of the binary search

The Challenge of Finding Errors

� “Deletion” is not immediate
� Marks it for deletion
� Will be deleted later

� Can still access object
� Data corrupted as recycled

ref blah
@#&%

blah
@#&%
@#&%

blah
@#&%

blah
blah



Primitive Confirmation Tools

� Logging (CULog)
� Print out a variable value to check it
� Alternatively print out a trace of program flow
� Goal: View the internal program state

� Assertions (CUAssert)
� Check that your assumption is true
� Crash the code if it is not
� Goal: Make error closer to the crash



Primitive Confirmation Tools

� CULog(statement, v1, v2, v3…)
� Uses same syntax as printf()
� Need to use char* to display string names
� Ex: CULog("Node is %s", node->getName().c_str())

� CUAssert(test, statement, v1, v2, v3…)
� Test is any boolean statement
� Remainder of arguments act like printf()
� Ex: CUAssert(index > 0, "index is %d", index)



Problems with Logging

� Verbose
� Code with print every animation frame
� Way too much information to sort through
� Most game designers will log to a file

� Distortionary
� Logging and other I/O is a blocking operation
� Will change the thread behavior of your app
� Can cause errors to appear/disappear



Advanced Tools

� Breakpoints
� Stop the execution of the code
� Can continue running from that point
� Can continue one step at a time

� Watches
� Look at the value of an individual variable
� Can drill down into object attributes
� But only works when variable is in scope



Advanced Tools

� Memory Dumps
� Look at a raw memory location 
� Does not require a variable to be in scope
� Good way to look at heap for corruption

� Thread Monitors
� Stack traces for all running threads
� All threads are frozen by a breakpoint
� Allows you to compare state across threads



XCode Tools



XCode Tools

Breakpoint



XCode Tools

Breakpoint

Watches

Watches



XCode Tools

Breakpoint

Watches

Watches

Thread
Manager



XCode Tools

Memory
Dump



Visual Studio Tools



Visual Studio Tools

Breakpoint



Visual Studio Tools

Breakpoint

Watches



Visual Studio Tools

Memory
Dump

Breakpoint

Watches



Visual Studio Tools

Memory
Dump

Breakpoint

Watches

Call
Stack



Visual Studio Tools

Memory
Dump

Breakpoint

Watches

Call
Stack

Threads have a 
separate window



Breakpoint Strategies

� Break early
� Break before the error, to check everything is okay
� Step forward and watch how the code changes

� Break infrequently
� If you always break, cannot initialize or animate anything
� Design special conditionals for your breakpoint

� Break on deletion
� Put breakpoints inside of all your destructors
� Allows you to track accidental deletion



Problems with Code Stepping

� Code stepping is not “thread safe”
� Will never leave your current thread
� Have to choose “continue” instead of “step”

� Makes it very difficult to find thread errors
� May miss when a variable changes state
� We had many problems in an old AudioEngine

� Solution: Rely heavily on assertions
� Assert every variable shared across threads
� Assert them everywhere they may change



Case Study: JSON Loading

� Problem in Cocos2d-x, an older engine
� Not a C++11 compliant engine
� Did not support smart pointers (or anything)
� Instead all game objects had reference counting

� Manual reference counting leads to mistakes
� Only slightly better than manual deletion
� Even Apple has abandoned this in Objective-C

� But very instructive for debugging memory



� Every object has a counter
� Tracks number of “owners” 
� No owners = memory leak 
� Increment when get reference 

� Often an explicit method call
� Historically called retain() 

� Decrement when reference lost
� Method call is release()
� If makes count 0, delete it 

Aside: Reference Counting 

Ref 1 Ref 2

Object
Count =2



Scene Graphs the Old Way

// create a new instance
Node* node = Node::create();
node->retain();

// Add the node to scene graph
scene->addChild(node);

// Release the local reference
node->release();

// Remove from scene graph
scene->removeChild(node);

Raw pointers!!

Manual refence counts!!



Scene Graphs the Old Way

// create a new instance
Node* node = Node::create();
node->retain();

// Add the node to scene graph
scene->addChild(node);

// Release the local reference
node->release();

// Remove from scene graph
scene->removeChild(node);

Custom allocator

Reference count 1

Reference count 1

Reference count 0 node is deleted

Reference count 2



Scene Graphs the Old Way

// create a new instance
Node* node = Node::create();
node->retain();

// Add the node to scene graph
scene->addChild(node);

// Do not release the local reference

// Remove from scene graph
scene->removeChild(node);
.

Custom allocator

Reference count 1

Reference count 2

Reference count 1

Memory Leak!



Case Study: JSON Loading

� Problem was a thread race condition
� Appeared on Windows, but not MacOS
� Because of particular Windows thread schedule
� But technically unsafe on all platforms

� Found by putting breakpoints in destructors
� Models getting deleted immediately after creation
� Watched the reference counts to find problem
� There was a stray release() before retain()



Case Study: b2BlockAllocator

� Memory address problem in Box2D engine
� Problem was because we put Box2D in a DLL
� Required stepping through the allocation process
� Required memory dumps to view the heap

� Problem with the static global variables
� DLLs have a distinct global space
� BlockAllocator was initialized inside of the DLL
� When it was used outside the DLL, not initialized



Summary

� Two main strategies to debugging
� Confirmation: Make sure code does what you think
� Binary Search: Find where confirmation wrong

� Primitive tools in code on all platforms
� Logging with CULog
� Assertions with CUAssert

� Advanced tools in professional IDEs
� Breakpoints and Watches
� Thread Monitors (to see call stack)
� Memory Dumps


