
gamedesigninitiative
at cornell university

the

C++:
Memory

Key Memory Issues for CUGL

� Memory Size
� Reinterpretting data types
� Performing arithmetic on pointers

� Allocation and Deallocation
� Understanding the basic syntax
� Understanding the problems and challenges

� Modern C++ Features
� Understanding shared pointers
� Understanding memory pools

Primitive Data Types

� char: 1 byte (8 bits)

� bool: 1 byte (sorry)

� short: 2 bytes

� int: 4 bytes

� long: 8 bytes

� float: 4 bytes

� double: 8 bytes

Sizing Up Memory

Complex Data Types

� Pointer: platform dependent
� 4 bytes on 32 bit machine
� 8 bytes on 64 bit machine

� Array: data size * length
� Strings too (w/ trailing null)

� Struct: sum of fields
� Same rule for classes
� Struct = class w/o methods

Not standard
May change

IEEE standard
Won’t change

class Date {

short year;

char day;

char month;

}

class Student {

int id;

Date birthdate;

Student* roommate;

}

2 byte

1 byte

1 bytes

4 bytes

4 bytes

4 bytes

4 or 8 bytes (32 or 64 bit)

12 or 16 bytes

Memory Example

� C++ allows ANY cast
� Is not “strongly typed”
� Assumes you know best
� But must be explicit cast

� Safe = aligns properly
� Type should be same size
� Or if array, multiple of size

� Unsafe = data corruption
� It is all your fault
� Large cause of seg faults

// Floats for OpenGL
float[] lineseg = {0.0f, 0.0f,

2.0f, 1.0f};

// Points for calculation
Vec2* points

// Convert to the other type
points = (Vec2*)lineseg;

// Use the new type
for(int ii = 0; ii < 2; ii++) {

CULog("Point %4.2, %4.2",
points[ii].x, points[ii].y);

}

Memory and Pointer Casting

� C++ allows ANY cast
� Is not “strongly typed”
� Assumes you know best
� But must be explicit cast

� Safe = aligns properly
� Type should be same size
� Or if array, multiple of size

� Unsafe = data corruption
� It is all your fault
� Large cause of seg faults

// Floats for OpenGL
float[] lineseg = {0.0f, 0.0f,

2.0f, 1.0f};

// Points for calculation
Vec2* points

// Convert to the other type
points = (Vec2*)lineseg;

// Use the new type
for(int ii = 0; ii < 2; ii++) {

CULog("Point %4.2, %4.2",
points[ii].x, points[ii].y);

}

Memory and Pointer Casting

This is safe.

� C++ allows ANY cast
� Is not “strongly typed”
� Assumes you know best
� But must be explicit cast

� Safe = aligns properly
� Type should be same size
� Or if array, multiple of size

� Unsafe = data corruption
� It is all your fault
� Large cause of seg faults

// Floats for OpenGL
float[] lineseg = {0.0f, 0.0f,

2.0f, 1.0f};

// Points for calculation
Vec2* points

points =
reinterpret_cast<Vec2*>(lineseg);

// Use the new type
for(int ii = 0; ii < 2; ii++) {

CULog("Point %4.2, %4.2",
points[ii].x, points[ii].y);

}

Memory and Pointer Casting

This is better!

� sizeof(type) is size in bytes
� sizeof(char) is 1
� sizeof(float) is 4

� Pointer arith uses sizeof
� Suppose p address is 4
� p+1 is 5 if p is char*
� p+1 is 8 if p is int*

� Why is this important?
� Some funcs require char*
� Reinterpret cast the pointer

int x;
int* array = new int[4];
char* ref = (char*)array;
// These are same
x = array[3];
x = *(array+3)
x = *((int*)(ref+3*sizeof(int))
// But these are NOT
x = *(ref+3*sizeof(int))
x = *((int*)(ref+3)

Pointer Arithmetic

Key Memory Issues for CUGL

� Memory size and alignment
� Reinterpretting data types
� Aligning arrays of data

� Allocation and Deallocation
� Understanding the basic syntax
� Understanding the problems and challenges

� Modern C++ Features
� Understanding shared pointers
� Understanding memory pools

malloc

� Based on memory size
� Give it number of bytes
� Typecast result to assign it
� No initialization at all

� Example:
char* p = (char*)malloc(4)

C/C++: Allocation Process

new

� Based on data type
� Give it a data type
� If a class, calls constructor
� Else no default initialization

� Example:
Point* p = new Point();

Stack

?
?

…
?

Heap

n bytes

sizeof(Class)

Stack

1
0

…
1

Heap

malloc

� Based on memory size
� Give it number of bytes
� Typecast result to assign it
� No initialization at all

� Example:
char* p = (char*)malloc(4)

C/C++: Allocation Process

new

� Based on data type
� Give it a data type
� If a class, calls constructor
� Else no default initialization

� Example:
Point* p = new Point();

Stack

?
?

…
?

Heap

n bytes

sizeof(Class)

Stack

1
0

…
1

Heap

Preferred in C
Preferred in C++

� Depends on allocation
� malloc: free
� new: delete

� What does deletion do?
� Marks memory as available
� Does not erase contents
� Does not reset pointer

� Only crashes if pointer bad
� Pointer is currently NULL
� Pointer is illegal address

int main() {

cout << "Program started" << endl;

int* a = new int[LENGTH];

delete a;

for(int ii = 0; ii < LENGTH; ii++) {

cout << "a[" << ii << "]="

<< a[ii] << endl;

}

cout << "Program done" << endl;

}

Manual Deletion in C/C++

Not An Array

� Basic format:
type* var = new type(params);
…
delete var;

� Example:
� int* x = new int(4);
� Point* p = new Point(1,2,3);

� One you use the most

Recall: Allocation and Deallocation

Arrays

� Basic format:
type* var = new type[size];
…
delete[] var; // Different

� Example:
� int* array = new int[5];
� Point* p = new Point[7];

� Forget [] == memory leak

� Leak: Cannot release memory
� Object allocated on heap
� Only reference is moved

� Consumes memory fast!
� Especially if inter-frame

� Can even happen in Java
� JNI supports native libraries
� Method may allocate memory
� Need another method to free
� Exmp: dispose() in LibGDX

Memory Leaks

memoryArea = newArea;

void foo() {

MyObject* o =
new MyObject();

o.doSomething();

o = null;

return;

}

void foo(int key) {

MyObject* o =
table.get(key);

o.doSomething();

o = null;

return;

}

A Question of Ownership

Memory
Leak

Not a
Leak

void foo() {

MyObject* o =
table.get(key);

table.remove(key);

o = null;

return;

}

void foo(int key) {
MyObject* o =

table.get(key);
table.remove(key);

ntable.put(key,o);
o = null;
return;

}

A Question of Ownership

Memory
Leak? Not a

Leak

Thread 1

void run() {

o.doSomething1();

}

A Question of Ownership

Thread 2

void run() {

o.doSomething2();

}

“Owners” of obj

Who deletes obj?

Function-Based

� Object owned by a function
� Function allocated object
� Can delete when function done

� Ownership rarely transferred
� May pass to other functions
� Part of the specification

� Really a stack-based object
� Active as long as allocator is
� So we can avoid the heap

Understanding Ownership

Object-Based

� Owned by another object
� Referenced by a field
� Stored in a data structure

� Allows multiple ownership
� No guaranteed relationship

between owning objects
� Call each owner a reference

� When can we deallocate?
� No more references
� References “unimportant”

Function-Based

� Object owned by a function
� Function allocated object
� Can delete when function done

� Ownership rarely transferred
� May pass to other functions
� Part of the specification

� Really a stack-based object
� Active as long as allocator is
� So we can avoid the heap

Understanding Ownership

Object-Based

� Owned by another object
� Referenced by a field
� Stored in a data structure

� Allows multiple ownership
� No guaranteed relationship

between owning objects
� Call each owner a reference

� When can we deallocate?
� No more references
� References “unimportant”

Easy: Will ignore

Key Memory Issues for CUGL

� Memory Size
� Reinterpretting data types
� Performing arithmetic on pointers

� Allocation and Deallocation
� Understanding the basic syntax
� Understanding the problems and challenges

� Modern C++ Features
� Understanding shared pointers
� Understanding memory pools

Strong Reference

� Reference asserts ownership
� Cannot delete referred object

� Assign to NULL to release
� Else assign to another object

� Can use reference directly
� No need to copy reference

� Treat like a normal object

� Standard type of reference

Reference Strength

Weak Reference

� Reference != ownership
� Object can be deleted anytime
� Often for performance caching

� Only use indirect references
� Copy to local variable first
� Compute on local variable

� Be prepared for NULL
� Reconstruct the object?
� Abort the computation?

� C++ can override anything
� Assignment operator =
� Dereference operator ->

� Class that holds a pointer
� Tracks the pointer usage
� Can delete pointer for you
� Access pointer with get()

� Type is templated type
� std::shared_ptr<Point>
� std::shared_ptr

Recall: Shared Pointers (C++11)

id2

x 1.0

y 2.0

z 3.0

Point

ptr id2

shared_ptrp

� C++ can override anything
� Assignment operator =
� Dereference operator ->

� Class that holds a pointer
� Tracks the pointer usage
� Can delete pointer for you
� Access pointer with get()

� Type is templated type
� std::shared_ptr<Point>
� std::shared_ptr

Recall: Shared Pointers (C++11)

id2

x 1.0

y 2.0

z 3.0

Point

ptr id2

shared_ptrp On the
stack

In the
heap

Shared Pointers in C++11
void foo() {

shared_ptr<Thing> p1(new Thing()); // Allocate new object
shared_ptr<Thing> p2=p1; // p1 and p2 share ownership
shared_ptr<Thing> p3 = make_shared<Thing>(); // Allocate another
…
p1 = find_some_thing(); // p1 might be new thing
p3->defrangulate(); // call a member function
cout <<*p2 << endl; // dereference pointer
…
// "Free" the memory for pointer
p1.reset(); // decrement reference, delete if last
p2 = nullptr; // empty pointer and decrement

}

Shared Pointers in C++11
void foo() {

shared_ptr<Thing> p1(new Thing()); // Allocate new object
shared_ptr<Thing> p2=p1; // p1 and p2 share ownership
shared_ptr<Thing> p3 = make_shared<Thing>(); // Allocate another
…
p1 = find_some_thing(); // p1 might be new thing
p3->defrangulate(); // call a member function
cout <<*p2 << endl; // dereference pointer
…
// "Free" the memory for pointer
p1.reset(); // decrement reference, delete if last
p2 = nullptr; // empty pointer and decrement

} All Deleted

Thread 1

Solving the Thread Problem

Thread 2

shared_ptr shared_ptr

counter

object

Tracks # of
ownership
pointers

Thread 1

Solving the Thread Problem

Thread 2

shared_ptr shared_ptr

counter

object

Tracks # of
ownership
pointersDeleted when

count is 0

� Shared pointers are objs
� They are not the pointer
� They contain the pointer

� Copy increases reference
� Want to avoid if possible
� Reference shared pointer!

� But make reference const
� Cannot modify pointer
� Can still modify object

void foo(shared_ptr<A> a) {
// Creates new reference to a

}

void foo(shared_ptr<A>& a) {
// No new reference to a
// But can modify pointer

}

void foo(const shared_ptr<A>& a){
// The preferred solution

}

Passing Shared Pointers

Shared Pointers in CUGL
class Texture : : public enable_shared_from_this<Texture> {
public:

/** Creates a sprite with an image filename. */
static shared_ptr<Texture> allocWithFile(const string& file);

/** Creates a sprite with a Texture2D object. */
static shared_ptr< Texture> allocWithData(const void *data, int w, int h);

private:
/** Creates, but does not initialize sprite */
Texture();

/** Initializes a sprite with an image filename. */
virtual bool initWithFile(const string& file);

/** Initializes a sprite with a texture. */
virtual bool initWithData(const void *data, int w, int h);

};

Allocation &
initialization

Allocation
only

Initialization
only

Shared Pointers in CUGL
class Texture : : public enable_shared_from_this<Texture> {
public:

/** Creates a sprite with an image filename. */
static shared_ptr<Texture> allocWithFile(const string& file);

/** Creates a sprite with a Texture2D object. */
static shared_ptr< Texture> allocWithData(const void *data, int w, int h);

private:
/** Creates, but does not initialize sprite */
Texture();

/** Initializes a sprite with an image filename. */
virtual bool initWithFile(const string& file);

/** Initializes a sprite with a texture. */
virtual bool initWithData(const void *data, int w, int h);

};

Allocation &
initialization

Allocation
only

Initialization
onlyIf going on stack

If going in heap

Shared Pointers in CUGL
class Texture : : public enable_shared_from_this<Texture> {
public:

/** Creates a sprite with an image filename. */
static shared_ptr<Texture> allocWithFile(const string& file);

/** Creates a sprite with a Texture2D object. */
static shared_ptr< Texture> allocWithData(const void *data, int w, int h);

private:
/** Creates, but does not initialize sprite */
Texture();

/** Initializes a sprite with an image filename. */
virtual bool initWithFile(const string& file);

/** Initializes a sprite with a texture. */
virtual bool initWithData(const void *data, int w, int h);

};

Allows object to turn
this into shared_ptr

Strong Reference

� Reference asserts ownership
� Cannot delete referred object

� Assign to NULL to release
� Else assign to another object

� Can use reference directly
� No need to copy reference

� Treat like a normal object

� Standard type of reference

Reference Strength

Weak Reference

� Reference != ownership
� Object can be deleted anytime
� Often for performance caching

� Only use indirect references
� Copy to local variable first
� Compute on local variable

� Be prepared for NULL
� Reconstruct the object?
� Abort the computation?

Shared Pointers

Weak Pointers in C++11
void foo() {

shared_ptr<Thing> p1(new Thing); // Allocate new object
weak_ptr<Thing> p2=p1; // p2 is a weak reference
…
p1 = find_some_thing(); // p1 might be new thing
auto p3 = p2.lock(); // Must lock p2 to dereference
cout <<*p3 << endl; // dereference pointer
…
// "Free" the memory for pointer
p1.reset(); // decrement reference, delete if last
p2 = nullptr; // empty pointer (but does not decrement)

}

Challenges of Shared/Weak Pointers

� Additional overhead acceptable, but significant
� Updating references is not cheap
� Two dereferences instead of one each time

� Ideal for inter-frame objects
� Objects that persist for a long time
� Smart pointers do not proliferate

� But what about intra-frame objects?
� Have high churn (creation/deletion)
� Example: particle systems

Custom Allocators

� Idea: Instead of new, get object from array
� Cuts down on allocation mid-frame
� Just reassign all of the fields
� Use Factory pattern for constructor

� Problem: Running out of objects
� We want to reuse the older objects
� Easy if deletion is FIFO, but often isn’t

Pre-allocated Array

Start Free End

(called Object Pool)

Easy if only
one object

type to
allocate

� Create an object queue
� Separate from preallocation
� Stores objects when “freed”

� To allocate an object…
� Look at front of free list
� If object there take it
� Otherwise make new object

� Preallocation unnecessary
� Queue wins in long term
� Main performance hit is

deletion/fragmentation

// Free the new particle
freelist.push_back(p);
…

// Allocate a new particle
Particle* q;

if (!freelist.isEmpty()) {
q = freelist.pop();

} else {
q = new Particle();

}

q.set(…)

Free Lists

CUGL Support: FreeList

� Manages memory pool for “arbitrary” classes
� Requires class have reset() method
� Only supports default constructor

� Example:
FreeList<Thing> freelist;
freelist.init(CAPACITY); // Creates obj array
Thing* t = freelist.malloc(); // Allocates object. MAY FAIL!
freelist.free(t) // Recycles object

� GreedyFreeList: malloc() is never null.

Particle Pool Example

Summary

� Pointer type-casting is very powerful
� Allows you to impose structure on raw data
� But requires you understand memory sizes

� Memory deallocation is very tricky
� Must track ownership of allocated objects
� The owner is responsible for deletion

� CUGL has some tools to make this simple
� Shared pointers manage ownership issues
� Free lists better for short-lived objects

