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Declaration

� Like a Java interface
� Fields, method prototypes
� Put in the header file

class AClass {
private:  // All privates in group

int field;
void helper(); 

public:  // All publics in group
AClass(int field);  // constructor
~AClass();           // destructor

}; // SEMICOLON!

Classes in C++

Implementation

� Body of all of the methods
� Preface method w/ class
� Put in the cpp file

void AClass::helper() {
field = field+1;

}
AClass::AClass(int field) {

this->field = field;
}
AClass::~AClass() {

// Topic of later lecture    
}
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Stack-Based

� Object assigned to local var
� Variable is NOT a pointer
� Deleted when variable deleted
� Methods/fields with period (.)

� Example:

void foo() {
Point p(1,2,3); // constructor
…
// Deleted automatically

}

Stack-Based vs. Heap Based

Heap-Based

� Object assigned to pointer
� Object variable is a pointer
� Must be manually deleted
� Methods/fields with arrow (->)

� Example:

void foo() {
Point* p = new Point(1,2,3); 
…
delete p;

}
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� Do not need heap to return
� Can move to calling stack
� But this must copy object

� Need a special constructor
� Called copy constructor
� Takes reference to object
� C++ calls automatically

� Is this a good thing?
� Performance cost to copy
� Cheaper than heap if small

Point foo_point(float x) {
Point p(x, x);
return p; // Not an error

}

Point::Point(const Point& p) {
x = p.x; 
y = p.y; 
z = p.z;

}

Returning a Stack-Based Object

Calls
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Copy Constructor

� Point(const Point& p)
� Copies the object p
� Object p can still be used

� Does not require C++11

� Same as move if
� Only has primitive fields
� Has no allocated resources

� Example: cugl::Vec2

Copy vs Move Constructor

Move Constructor

� Point(Point&& p)
� Takes resources from p
� Object p not safe to use

� Requires C++11

� Better than copy if
� Object is a return value
� Object has fields in heap

� Example: cugl::Poly2



The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more
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� Can implement in .h file
� Define methods Java-style
� Will inline the methods

� Less important these days
� Good compilers inline
� Function overhead is low

� Only two good applications
� Getters and setters
� Overloaded operators
� Use this sparingly

class Point {
private:

float x;
float y;

public:

Point(float x, float y, float z);

float getX() const { return x; }

void setX(float x) {
this->x = x;

}

…
};

Inlining Method Definitions



� Change operator meaning
� Great for math objects: +, *
� But can do any symbol: ->

� Method w/ “operator” prefix
� Object is always on the left
� Other primitive or const &

� Right op w/ friend function
� Function, not a method
� Object explicit 2nd argument
� Has full access to privates 

Point& operator*=(float rhs) {
x *= rhs; y *= rhs; z *= rhs;
return *this;

}

Point operator*(const float &rhs) const {
return (Point(*this)*=rhs);

}

friend Point operator* (float lhs, 
const Point& p) {

return p*lhs;
}

Operator Overloading



� Subclassing similar to Java
� Inherits methods, fields
� Protected limits to subclass

� Minor important issues
� Header must import parent
� super() syntax very different
� See tutorials for more details

� Weird C++ things to avoid
� No multiple inheritance!
� No private subclasses

class A {
public:

float x;

A(float x) { this->x = x; }
…

};

class B : public A {
public:

float y;

B(float x, float y) : A(x) {
this->y = y;

}
…

};

Subclasses
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C++ and Polymorphism

� Polymorphism was a major topic in CS 2110
� Variable is reference to interface or base class
� Object itself is instance of a specific subclass
� Calls to methods are those implementated in subclass

� Example:
� List<int> list = new LinkedList<int>();
� list.add(10); // Uses LinkedList implementation

� This is a major reason for using Java in CS 2110
� C++ does not quite work this way



� Cannot change stack object
� Variable assignment copies
� Will lose all info in subclass

� Only relevant for pointers
� C++ uses static pointer type
� Goes to method for type

� Why did they do this?
� No methods in object data
� Reduces memory lookup
� But was it worth it?

class A {
public:

int foo() {return 42;}
};

class B : public A {
public:

int foo() {return 9000; }
};

B* bee = new B();

x = bee->foo();    // x is 9000

A* aay = (A*)bee;

y = aay->foo();    // y is 42!!!

C++ and Polymorphism



� Purpose of virtual keyword
� Add to method in base class
� Says “will be overridden”

� Use optional in subclass
� Needed if have subsubclass
� Or if not further overridden

� Hard core C++ users hate
� Causes a performance hit
� Both look-up and storage
� But not a big deal for you

class A {
public:

virtual int foo() {return 42;}
};

class B : public A {
public:

int foo() override {return 9000; }
};

B* bee = new B();

x = b->foo();    // x is 9000

A* aay = (A*)bee;

y = a->foo();    // y is 9000

Fixing C++ Polymorphism



Usage

� Class has type parameter <>
� Add type at allocation time
� v = new std::vector<int>();

� Required in the C++ STL
� std::vector, std::deque
� std::unordered_map

� Also in our asset manager
� Associate a loader with type
� amgr->attach<Font>(loader);

Templates: Like Generics But Not

Definition

� Preface class with template

� template <class T>
class A{

T x
const T& getX() { return x;}
void setX(T v)    { x = v;}

};

� No .cpp file! Only .h
� Import header to use class
� Compiled at instantiation



� Class that holds a pointer
� Tracks the pointer usage
� Can delete pointer for you
� Access pointer with get()

� Type is templated type
� std::shared_ptr<Point>
� std::shared_ptr<Font>

� This requires C++11
� Which you should use…
� Check your IDE settings

Application: Smart Pointers

id2

x 1.0

y 2.0

z 3.0

p

Point

ptr id2

shared_ptr



Heap Allocation

void func() {

Point* p = new Point(1,2,3);

…

delete p;

}

� Must remember to delete

� Otherwise will memory leak

Smart Pointers and Allocation

Smart Pointer

void func() {

shared_ptr<Point> p;

p = make_shared<Point>(1,2,3);

…

}

� Deletion is not necessary

� Sort-of garbage collection
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Smart Pointer

void func() {

shared_ptr<Point> p;

p = make_shared<Point>(1,2,3);

…

}

� Deletion is not necessary

� Sort-of garbage collection

More on this in Memory Lectures



Normal Pointers

B* b;    // The super class
A* a;    // The subclass

Acceptable:

b = new B();
a = (A*)b;

Better:
b = new B();
a = dynamic_cast<A*>(b);

Typecasting and Smart Pointers

Smart Pointers

shared_ptr<B> b;    // Contains B*
shared_ptr<A> a;    // Contains A*

Bad:
b = make_shared<B>();
a = (shared_ptr<A>)b;

Good:
b = make_shared<B>();
a = dynamic_pointer_cast<A>(b);
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Closures: C++ Lambda Functions

� Type: std::function<T>
� Type is function signature
� Allows function in variable
� Example Declaration:

std::function<void(int)> a;

� Important for callbacks
� Example: Collision listener
� See WorldController class

� This requires C++11
� Which you should use…
� Check your IDE settings

Variable Capture Rules

int x = 0;

std::function<int(int)> a = [=](int y) 
{ return x+y; };

std::function<int(int)> b =[&](int y)
{ return x+y; };

x = 5;

int y = a(4);
int z = b(4);
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copies x

references x



Summary

� C++ has a lot of similarities to Java
� Java borrowed much of its syntax, but “cleaned it up”

� Memory in C++ is a lot trickier
� Anything allocated with new must be deleted
� C++ provides many alternatives to avoid use of new

� Classes in C++ have some important differences
� Can be copied between stacks if written correctly
� C++ supports operator overloading for math types
� C++ needs special keywords to support polymorphism


