
gamedesigninitiative
at cornell university

the

C++:
Classes

Declaration

� Like a Java interface
� Fields, method prototypes
� Put in the header file

class AClass {
private: // All privates in group

int field;
void helper();

public: // All publics in group
AClass(int field); // constructor
~AClass(); // destructor

}; // SEMICOLON!

Classes in C++

Implementation

� Body of all of the methods
� Preface method w/ class
� Put in the cpp file

void AClass::helper() {
field = field+1;

}
AClass::AClass(int field) {

this->field = field;
}
AClass::~AClass() {

// Topic of later lecture
}

Declaration

� Like a Java interface
� Fields, method prototypes
� Put in the header file

class AClass {
private: // All privates in group

int field;
void helper();

public: // All publics in group
AClass(int field); // constructor
~AClass(); // destructor

}; // SEMICOLON!

Classes in C++

Implementation

� Body of all of the methods
� Preface method w/ class
� Put in the cpp file

void AClass::helper() {
field = field+1;

}
AClass::AClass(int field) {

this->field = field;
}
AClass::~AClass() {

// Topic of later lecture
}

Class name
acts like a
namespace

Stack-Based

� Object assigned to local var
� Variable is NOT a pointer
� Deleted when variable deleted
� Methods/fields with period (.)

� Example:

void foo() {
Point p(1,2,3); // constructor
…
// Deleted automatically

}

Stack-Based vs. Heap Based

Heap-Based

� Object assigned to pointer
� Object variable is a pointer
� Must be manually deleted
� Methods/fields with arrow (->)

� Example:

void foo() {
Point* p = new Point(1,2,3);
…
delete p;

}

Stack-Based

� Object assigned to local var
� Variable is NOT a pointer
� Deleted when variable deleted
� Methods/fields with period (.)

� Example:

void foo() {
Point p(1,2,3); // constructor
…
// Deleted automatically

}

Stack-Based vs. Heap Based

Heap-Based

� Object assigned to pointer
� Object variable is a pointer
� Must be manually deleted
� Methods/fields with arrow (->)

� Example:

void foo() {
Point* p = new Point(1,2,3);
…
delete p;

}

Also if
pointer to

stack-based

� Do not need heap to return
� Can move to calling stack
� But this must copy object

� Need a special constructor
� Called copy constructor
� Takes reference to object
� C++ calls automatically

� Is this a good thing?
� Performance cost to copy
� Cheaper than heap if small

Point foo_point(float x) {
Point p(x, x);
return p; // Not an error

}

Point::Point(const Point& p) {
x = p.x;
y = p.y;
z = p.z;

}

Returning a Stack-Based Object

Calls

� Do not need heap to return
� Can move to calling stack
� But this must copy object

� Need a special constructor
� Called copy constructor
� Takes reference to object
� C++ calls automatically

� Is this a good thing?
� Performance cost to copy
� Cheaper than heap if small

Point foo_point(float x) {
Point p(x, x);
return p; // Not an error

}

Point::Point(const Point& p) {
x = p.x;
y = p.y;
z = p.z;

}

Returning a Stack-Based Object

Calls

What happens when you return a string

Copy Constructor

� Point(const Point& p)
� Copies the object p
� Object p can still be used

� Does not require C++11

� Same as move if
� Only has primitive fields
� Has no allocated resources

� Example: cugl::Vec2

Copy vs Move Constructor

Move Constructor

� Point(Point&& p)
� Takes resources from p
� Object p not safe to use

� Requires C++11

� Better than copy if
� Object is a return value
� Object has fields in heap

� Example: cugl::Poly2

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

Caller cannot
modify the

object returned

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

Caller cannot
modify the

object returned

Method cannot
modify the

object passed

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

Caller cannot
modify the

object returned

Method cannot
modify the

object passed

Method cannot
modify any
object fields

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

� Believe it or not, these are not the only consts!
� But these are generally the only ones to use
� See online tutorials for more

Caller cannot
modify the

object returned

Method cannot
modify the

object passed

Method cannot
modify any
object fields

� Can implement in .h file
� Define methods Java-style
� Will inline the methods

� Less important these days
� Good compilers inline
� Function overhead is low

� Only two good applications
� Getters and setters
� Overloaded operators
� Use this sparingly

class Point {
private:

float x;
float y;

public:

Point(float x, float y, float z);

float getX() const { return x; }

void setX(float x) {
this->x = x;

}

…
};

Inlining Method Definitions

� Change operator meaning
� Great for math objects: +, *
� But can do any symbol: ->

� Method w/ “operator” prefix
� Object is always on the left
� Other primitive or const &

� Right op w/ friend function
� Function, not a method
� Object explicit 2nd argument
� Has full access to privates

Point& operator*=(float rhs) {
x *= rhs; y *= rhs; z *= rhs;
return *this;

}

Point operator*(const float &rhs) const {
return (Point(*this)*=rhs);

}

friend Point operator* (float lhs,
const Point& p) {

return p*lhs;
}

Operator Overloading

� Subclassing similar to Java
� Inherits methods, fields
� Protected limits to subclass

� Minor important issues
� Header must import parent
� super() syntax very different
� See tutorials for more details

� Weird C++ things to avoid
� No multiple inheritance!
� No private subclasses

class A {
public:

float x;

A(float x) { this->x = x; }
…

};

class B : public A {
public:

float y;

B(float x, float y) : A(x) {
this->y = y;

}
…

};

Subclasses

� Subclassing similar to Java
� Inherits methods, fields
� Protected limits to subclass

� Minor important issues
� Header must import parent
� super() syntax very different
� See tutorials for more details

� Weird C++ things to avoid
� No multiple inheritance!
� No private subclasses

class A {
public:

float x;

A(float x) { this->x = x; }
…

};

class B : public A {
public:

float y;

B(float x, float y) : A(x) {
this->y = y;

}
…

};

Subclasses

Weird things
if you make

it private

Like Java
call to super

C++ and Polymorphism

� Polymorphism was a major topic in CS 2110
� Variable is reference to interface or base class
� Object itself is instance of a specific subclass
� Calls to methods are those implementated in subclass

� Example:
� List<int> list = new LinkedList<int>();
� list.add(10); // Uses LinkedList implementation

� This is a major reason for using Java in CS 2110
� C++ does not quite work this way

� Cannot change stack object
� Variable assignment copies
� Will lose all info in subclass

� Only relevant for pointers
� C++ uses static pointer type
� Goes to method for type

� Why did they do this?
� No methods in object data
� Reduces memory lookup
� But was it worth it?

class A {
public:

int foo() {return 42;}
};

class B : public A {
public:

int foo() {return 9000; }
};

B* bee = new B();

x = bee->foo(); // x is 9000

A* aay = (A*)bee;

y = aay->foo(); // y is 42!!!

C++ and Polymorphism

� Purpose of virtual keyword
� Add to method in base class
� Says “will be overridden”

� Use optional in subclass
� Needed if have subsubclass
� Or if not further overridden

� Hard core C++ users hate
� Causes a performance hit
� Both look-up and storage
� But not a big deal for you

class A {
public:

virtual int foo() {return 42;}
};

class B : public A {
public:

int foo() override {return 9000; }
};

B* bee = new B();

x = b->foo(); // x is 9000

A* aay = (A*)bee;

y = a->foo(); // y is 9000

Fixing C++ Polymorphism

Usage

� Class has type parameter <>
� Add type at allocation time
� v = new std::vector<int>();

� Required in the C++ STL
� std::vector, std::deque
� std::unordered_map

� Also in our asset manager
� Associate a loader with type
� amgr->attach(loader);

Templates: Like Generics But Not

Definition

� Preface class with template

� template <class T>
class A{

T x
const T& getX() { return x;}
void setX(T v) { x = v;}

};

� No .cpp file! Only .h
� Import header to use class
� Compiled at instantiation

� Class that holds a pointer
� Tracks the pointer usage
� Can delete pointer for you
� Access pointer with get()

� Type is templated type
� std::shared_ptr<Point>
� std::shared_ptr

� This requires C++11
� Which you should use…
� Check your IDE settings

Application: Smart Pointers

id2

x 1.0

y 2.0

z 3.0

p

Point

ptr id2

shared_ptr

Heap Allocation

void func() {

Point* p = new Point(1,2,3);

…

delete p;

}

� Must remember to delete

� Otherwise will memory leak

Smart Pointers and Allocation

Smart Pointer

void func() {

shared_ptr<Point> p;

p = make_shared<Point>(1,2,3);

…

}

� Deletion is not necessary

� Sort-of garbage collection

Heap Allocation

void func() {

Point* p = new Point(1,2,3);

…

delete p;

}

� Must remember to delete

� Otherwise will memory leak

Smart Pointers and Allocation

Smart Pointer

void func() {

shared_ptr<Point> p;

p = make_shared<Point>(1,2,3);

…

}

� Deletion is not necessary

� Sort-of garbage collection

More on this in Memory Lectures

Normal Pointers

B* b; // The super class
A* a; // The subclass

Acceptable:

b = new B();
a = (A*)b;

Better:
b = new B();
a = dynamic_cast<A*>(b);

Typecasting and Smart Pointers

Smart Pointers

shared_ptr b; // Contains B*
shared_ptr<A> a; // Contains A*

Bad:
b = make_shared();
a = (shared_ptr<A>)b;

Good:
b = make_shared();
a = dynamic_pointer_cast<A>(b);

Normal Pointers

B* b; // The super class
A* a; // The subclass

Acceptable:

b = new B();
a = (A*)b;

Better:
b = new B();
a = dynamic_cast<A*>(b);

Typecasting and Smart Pointers

Smart Pointers

shared_ptr b; // Contains B*
shared_ptr<A> a; // Contains A*

Bad:
b = make_shared();
a = (shared_ptr<A>)b;

Good:
b = make_shared();
a = dynamic_pointer_cast<A>(b);

Polymorphism is messy on Smart Pointers

Closures: C++ Lambda Functions

� Type: std::function<T>
� Type is function signature
� Allows function in variable
� Example Declaration:

std::function<void(int)> a;

� Important for callbacks
� Example: Collision listener
� See WorldController class

� This requires C++11
� Which you should use…
� Check your IDE settings

Variable Capture Rules

int x = 0;

std::function<int(int)> a = [=](int y)
{ return x+y; };

std::function<int(int)> b =[&](int y)
{ return x+y; };

x = 5;

int y = a(4);
int z = b(4);

Closures: C++ Lambda Functions

� Type: std::function<T>
� Type is function signature
� Allows function in variable
� Example Declaration:

std::function<void(int)> a;

� Important for callbacks
� Example: Collision listener
� See WorldController class

� This requires C++11
� Which you should use…
� Check your IDE settings

Variable Capture Rules

int x = 0;

std::function<int(int)> a = [=](int y)
{ return x+y; };

std::function<int(int)> b =[&](int y)
{ return x+y; };

x = 5;

int y = a(4);
int z = b(4);

free variable

Closures: C++ Lambda Functions

� Type: std::function<T>
� Type is function signature
� Allows function in variable
� Example Declaration:

std::function<void(int)> a;

� Important for callbacks
� Example: Collision listener
� See WorldController class

� This requires C++11
� Which you should use…
� Check your IDE settings

Variable Capture Rules

int x = 0;

std::function<int(int)> a = [=](int y)
{ return x+y; };

std::function<int(int)> b =[&](int y)
{ return x+y; };

x = 5;

int y = a(4); // Value is 4
int z = b(4); // Value is 9

free variable

copies x

references x

Summary

� C++ has a lot of similarities to Java
� Java borrowed much of its syntax, but “cleaned it up”

� Memory in C++ is a lot trickier
� Anything allocated with new must be deleted
� C++ provides many alternatives to avoid use of new

� Classes in C++ have some important differences
� Can be copied between stacks if written correctly
� C++ supports operator overloading for math types
� C++ needs special keywords to support polymorphism

