the

gamedesigninitiative
at cornell university
Lecture 10

Game Audio

History of Sound in Games

Basic

Sounds

* Arcade games
e Early handhelds

e Early consoles

Game Audio

the . P .
gamedemgmruhatwe
at corne 11 university

History of Sound in Games

Recorded
Sound
Samples

Basic

=

Sounds

Sample = pre-recorded audio

* Arcade games * Starts w/ MIDI
e Early handhelds e 5t generation
e Early consoles (Playstation)

* Early PCs

at cornell university

3 Game Audio gamedesigninitiative

History of Sound in Games

Basic
Sounds

* Arcade games
e Early handhelds

e Early consoles

Recorded

Sound
Samples

e Starts w/ MIDI » Sample selection
e 5t generation * \olume
(Playstation) e Pitch
* Early PCs e Stereo pan
Game Audio

the . P .
gamedeSIgrumtlatlve
at cornel 11 university

History of Sound in Games

Recorded
Sound
Samples

i More
Basic

Variability

SOl of Samples

* Arcade games e Starts w/ MIDI » Sample selection * Multiple samples
e Early handhelds e 5t generation * \olume * Reverb models
e Early consoles (Playstation) * Pitch e Sound filters

* Early PCs e Stereo pan e Surround sound

at cornell university

5 Game Audio ti%es;lrnedesigmirlitiati_fe

History of Sound in Games

LibGDX CUGL
IS here IS here
: Recorded / \Y[o] 5]
S?)i?\lgs Soun > XVariability

Samples

of Samples

* Arcade games e Starts w/ MIDI » Sample selection * Multiple samples
e Early handhelds e 5t generation * \olume * Reverb models
e Early consoles (Playstation) * Pitch * Sound filters

* Early PCs e Stereo pan e Surround sound

at cornell university

6 Game Audio ti%.?amedesigmirlitiati\‘fe

The Technical Challenges

® Sound formats are not (really) cross-platform
® |tis not as easy as choosing MP3

® Different platforms favor different formats

® Sound playback APIs are not standardized

® | IbGDX & CUGL are layered over many APIs
® Behavior iIs not the same on all platforms

® Sound playback crosses frame boundaries
® Mixing sound with animation has challenges

the . e e e
i amedesigninitiative
7 G ame AUdI 0 g §c0rnell university

File Format vs Data Format

File Format Data Format
® The data storage format ® The actual audio encoding
® Has data other than audio ® Basic audio codec

® Bit rate (# of bits/unit time)

* Many have many encodings e Sample rate

® _caf holds MP3 and (digitizes an analog signal)
PCM
® Examples:
® Examples: ® MP3, Linear PCM
® .mp3, .wav, .aiff e AAC, HE-AAC, ALAC
® .aac, .mp4, .mda ® FLAC, \Vorbis
(Apple)

® .flac, .ogg (Linux)

8 Game Audio tg:reamedesigrﬂnitiz;vciye

llllllllllllllll y

Game Audio Formats

File Formats

Linear PCM Completely uncompressed sound .wav, .aiff

MP3 A popular compressed, lossy codec .mp3, .wav

\orbis Xiph.org’s alternative to MP3 .0gg

FLAC Xiph.org’s compressed, lossless codec .flac, .ogg

MIDI NOT SOUND; Data for an instrument .midi
(HE)AAC Alossy codec, Apple’s MP3 alternative - aac, .mp4, .mda

ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

MP3 largely avoided due to patent issues.

tttttttttttttttt y

the;_—
. desieninitiati
9 Game Audio gamedesigninitiative

Game Audio Formats

File Formats

Linear PCM C mpln-l-nl\l i AaArmracnend cAlAA

.wav, .aiff
MP3 A Supported in LibGDX .mp3, .wav

LVOI’biS h.org s ancrauve o vir o .0gg
FLAC Xiph.org’s compressed, lossless codec .flac, .ogg
MIDI NOT SOUND; Data for an instrument .midi
ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

MP3 largely avoided due to patent issues.

10 Game Audio tgh?nnedesigminiti;atiye

aaaaaaa 11 university

Game Audio Formats

File Formats

Linear PCM Completely uncompressed sound .wav, .aiff

MP3 . .mp3, .wav
Supported in CUGL
| . 0gg

\orbis

FLAC Xjph.org’s compressed, lossless codec .flac, .ogg
NOT SOUND,; Data for an instrument .midi

ALAC Apple’s lossless codec (but compressed) .alac, .mp4, .m4a

MP3 largely avoided due to patent issues.

11 Game Audio tgh?nnedesigminiti;atiye

aaaaaaa 11 university

Which Formats Should You Choose?

® Question 1: Streaming or no streaming?
® Audio gets large fast; music often streamed
® But streaming creates overhead; bad for sound fx
® Few engines support WAV streams (LIbGDX & CUGL do)

® Question 2: Lossy or lossless compression?
® Music can by lossy; sound fx not so much
® Only FLAC and WAV are standard lossless

® Question 3: How many channels (speakers) needed?
® MP3 channel is stereo only
® QOthers support many channels (e.g. 7.1 surround)

e —

1 2 Game Audio t{c:reémedesigninitiative

lllllllllllllllll

Which Formats Should You Choose?

® Question 1: Streaming or no streaming?
® Audio gets large fast; music often streamed

Sound FX: Linear PCM/WAV

Music: OGG Vorbis

® Question 3: How many channels (speakers) needed?

® MP3 channel is stereo only
® QOthers support many channels (e.g. 7.1 surround)

e —

the . e e e
i amedesigninitiative
13 Game AUdI 0 g a%cornell university

Linear PCM Format

® Sound data is an array of sample values

05020103 |-05(/00|-02(-02|00/|-06|02/]-03|04]0.0

® Asample is an amplitude of a sound wave

alle ally
"l"‘ B[Ln [T

® Values are normalized -1.0 to 1.0 (so they are floats)

14 Game Audio gamede51gn1n1t1atlve

Linear PCM Format

® Sound data is an array of sample values

0502|0103 |-05({00(|-02|-02|00(-06(02]/]-03|04/|0.0

® Asample is an amplitude of a sound wave

at cornell university

15 Game Audio gamedesigninitiative

Linear PCM Format

® Sound data is an array of sample values

05020103 |-05(/00|-02(-02|00/|-06|02/]-03|04]0.0

‘."md'l|ls‘ll|'lll|‘ |

® Magnitude of the amplitude is the volume

® (is lowest volume (silence)
® 1 is maximum volume of sound card
e Multiply by number 0 to 1 to change global volume

16 Game Audio gamedes1gmn1t1at1ve

Linear PCM Format

® Sound data is an array of sample values

05020103 |-05(/00|-02(-02|00/|-06|02/]-03|04]0.0

‘| ||
LU L1 LR LD
N l'(\\=

/)

A
a
_'_r}_ 9 _._!__{I
\
|

'/

® Magnitude of the amplitude is the volume
® (is lowest volume (silence)
® 1 is maximum volume of sound card
e Multiply by number 0 to 1 to change global volume

aw

. v

llllllllllllllll y

17 Game Audio tggeamedesiglninitia’ci\(e

Linear PCM Format

® Samples are organized into (interleaved) channels

05102 (-01f03 |-05{00(-02}-02| 00 (-06(02|-03| 04 (0.0

Y

frame

® Each channel iIs essentially a speaker
® Mono sound has one channel
® Stereo sound has two channels
e 7.1 surround sound is eight channels

® A frame is set of simultaneous samples
® Each sample iIs In a separate frame

llllllllllllllll y

18 Game Audio tzc:reémedesigninitiative

Linear PCM Format

® The sample rate is frames per second

¢ 1 second

i ally
‘n.'m ‘1|||' "

frames N

° Example 0.5 seconds of stereo at 44.1 kHZ
® 0.55*44100 f/s = 22050 frames
® 2 samples/frame * 22050 frames = 44100 samples
® 4 bytes/sample * 44100 samples = 176.4 kBytes

® 1 minute of stereo CD sound is 21 MB!

e —

the . e e e
i amedesigninitiative
1 9 G ame AUdI 0 g §c0rnell university

Playing Sound Directly

PCM data buffer

(R —

20 Game Audio ti%.?amedesigminitiz'atiye

ttttttttttttttttttt

Playing Sound Directly

Write PCM
chunk to buffer

>

PCM data buffer

21 Game Audio

(R —

ttttttttttttttttttt

Direct Sound in CUGL: AudioNode

® Class representing an audio source instance
® Not the same as Sound, which Is an asset
® sound->createNode () returns an instance node
® Plug node into an AudioOutput (device)

® Data Is read from method
/**
* Reads up to the specified number of frames 1into
the given buffer

*

* (dparam buffer The read buffer to store the
results
* (@param frames The maximum number of frames to
read
*/ . the d
22 Game Audio R

Uint32 AudioNode::read(float* buffer, Uint32 —

Direct Sound in CUGL: AudioNode

® Class representing an audio source instance
® Not the same as Sound, which is an asset

® sound->createNode () (© A

® Plug node into an AudioOut Called_ In separate
audio thread

® Data Is read from method V ’
/**

* Reads up to the specified number of frames 1into
the given buffer

*

* (dparam buffer The read buffer to store the
results
* (@param frames The maximum number of frames to
read
*/ . the .
23 Game Audio gamedesigninitiative

Uint32 AudioNode: :read(float* buffer, Uint32

The Latency Problem

Buffer is really a queue
® Qutput from queue front
® Playback writes to end
® (Creates a playback delay

Latency: amount of delay
® Some latency must exist

® QOkay If latency < framerate
® Android latency is ~90 ms!

l delay |

e Buffering Is a necessary evil

24

® Keeps playback smooth
® Allows real-time effects

Game Audio

Sound
Source

Playback

Buffer

the . e el .
gamedeSIgnlmtlatlve
aaaaaaa 11 university

Playing Sound Directly

Write PCM
chunk to buffer

w PCM data buffer

25

Choice of buffer size is important!
® Too large: long latency until next sound plays
® Too small: buffers swap too fast, causing audible pops

Game Audio tgﬂg?amedesigminitiz'ati\‘fe

lllllllllllllllllll

Playing Sound Directly

Write PCM
chunk to buffer

w PCM data buffer

\

£ Windows: 528 bytes (even if you ask for larger) A
* MacOS, 10S: 512-1024 bytes (hardware varies)

_* Android: 2048-4096 bytes (hardware varies) py

26 Game Audio tgﬂg?amedesigminitiz'ati\‘fe

lllllllllllllllllll

How Streaming Works

® All sound cards only play PCM data
® Other files (MP3 etc.) are decoded into PCM data
® But the data Is paged-in like memory In an OS

® Why LibGDX/CUGL can stream WAV files too!

y
Sound Streaming
File | Buffer
Append PCM Page Retrieve PCM Page

27 Game Audio tgh?nnedesigminiti;atiye

ttttttttttttttttttt

How Streaming Works

Sound
File

Streaming Sound
Buffer Card

—

4) 4)
Page size set Chunk size set
by file format by audio API
\. / . Y,
® Sound: Sound asset that is preloaded as full PCM

® Music: Sound asset that Is streamed as PCM pages

the . e e .
H amedesigninitiative
2 8 G ame AUd 10 g §c0rnell university

How Streaming Works

Streaming
Buffer

Sound
Card

—

Page size set
by file format

-

Chunk size set
by audio API

\

Game Audio

the . o ey g
gamedesigninitiative
at cornell university

Handling Multiple Sounds

PCM \
Data

PCM Literally!

+=

PCM
Data

PCM
Data

PCM
Data
30 Game Audio g%medesia%grigtiatiye

uuuuuuuu

Handling Multiple Sounds

31

PCM \
Data

PCM Literally!
Data
+ =
Datd Card
FI;CtM ® Can create values outside of -1to 1
ala ® This causes clipping/distortion
PCM ® Common if many simultaneous sounds
Data / ® Audio engineer must balance properly

Game Audio gamedesigninitiative
at cornell university

Why Is Mixing Hard?

® Playback may include multiple sounds

® Sounds may play simultaneously (offset)
® Simultaneous sounds may be same asset
® Asset (source) vs. Instance (playback)

® Playback crosses frame boundaries

32

® |t may span multiple animation frames
® Need to know when it stops playing
® May need to stop (or pause) it early

e —

Game Audio tggeamedesiglninitia’ci\(e

lllllllllllllllll

We Want Something Simpler!

® \Want ability to play and track sounds
® [unctions to load sound into card buffer
® [unctions to detect if sound has finished

® \Want ability to modify active sounds

® Functions for volume and pitch adjustment
® Functions for stereo panning (e.g. left/right channels)
® [unctions to pause, resume, or loop sound

® \Want ability to mix sounds together
® Functions to add together sound data quickly
® Background process for dynamic volume adjustment

the . e e e
i amedesigninitiative
33 G ame AUdI 0 g §c0rnell university

We Want Something Simpler!

® \Want ability to play and track sounds
® [unctions to load sound into card buffer
® [unctions to detect if sound has finished

® \Want ability to modify acti

This is the purpose of a

__—<rresulTig, of loop sound

® \Want ability to mix sounds together
® Functions to add together sound data quickly
® Background process for dynamic volume adjustment

34 Game Audio tggeamedesiglninitia’ci\(e

lllllllllllllllll

Cross-Platform Sound Engines

® OpenAL

Created in 2000 by Loki Software for Linux
Was an attempt to make a sound standard
Loki went under; last stable release in 2005

open AL

Apple supported, but HARD deprecated in 10S 9

* FMOD/WWISE

35

Industry standard for game development
Mobile support is possible but not easy
Not free; but no cost for low-volume sales

Game Audio

fanod.

e —

lllllllllllllllllll

Proprietary Sound Engines

® Apple AVFoundation

® API to support modern sound processing

Mainly designed for music/audio creation apps

But very useful for games and playback apps

® OpenSL ES

36

Directed by Khronos Group (OpenGL)
Substantially less advanced than other APls
Really only has support in Android space
Google Is deprecating in 2022

Game Audio

e —

the . ETEIT
gamedesigninitiative
at cornell university

Proprietary Sound Engines

® Apple AVFoundation

® API to support modern sound processing

® Mainly designed for music/audio creation apps

And many competing 3" party solutions

37

® Directed by Khronos Group (OpenGL)

® Substantially less advanced than other APIs
® Really only has support in Android space

® (Google is deprecating in 2022

Game Audio

e —

the . ETEIT
gamedesigninitiative
at cornell university

What about SDL?

® CUGL i1s on top of SDL

38

SDL |

Simple Directmedia Layer

® SDL has its own audio API
® \Works on all platforms

But it Is a extremely low-level API

® Fill the buffer with linear PCM data

® Either pull (callback) or push (queue)

® No support for non-WAV audio formats

® No support for mixing, pausing, or anything

Game Audio tggeameclesiglninitir;vciye

lllllllllllllllll

Solution: CUGL Audio Classes

® AudioEngine: Playing sound effects
® Built on the the OpenAL model
® \ery easy to use and understand
® Designed for simultaneous sounds

® AudioQueue: Playing music sequences
® Accessed from the AudioEngine
® Creates seamless playback queues
® |deal for long-running music loops

e —

39 Game Audio t{c:reémedesigninitiative

lllllllllllllllll

Solution: CUGL Audio Classes

® AudioEngine: Playing sound effects
® Built on the the OpenAL model
® \/erv easv to use and understand

Modern version of OpenAL model
¢ A

® Accessed from the AudioEngine

T T TR T T T T T T T T

® Creates seamless playback queues
® |deal for long-running music loops

e —

the . e e e
i amedesigninitiative
40 G ame AUdI 0 g a%cornell university

Classic Model: Playback Slots

Slot

Slot

Slot

Slot

Slot

Engine has fixed
number of slots
(historically 24)

41

open AL

(R —

the . e el .
H amedesigninitiative
G ame AUd I O g § cornell universi

ty

Classic Model: Playback Slots

(Slof ’\\ Engine has fixed
J number of slots
(historically 24)

\ 7,
(7 2\
Slot
\3 /)
(r)
Slot
\3 7/

L5

_oad sound
Into a slot

to play it

o)
opennL

(R —

the . e e .
H amedesigninitiative
42 G ame AUd 10 g §c0rnell university

Classic Model: Playback Slots

’\\ Engine has fixed
number of slots

(historically 24)

Slot
Slot
Slot
s Queue N 7
to follow
after
[[Slot

_oad sound
Into a slot

to play it

o)
openl;nL

(R —

the . e e .
H amedesigninitiative
G ame AUdI 0 g §c0rnell university

Playing a Sound with Slots

® Request a playback slot for your asset
® |f none is available, sound fails to play
® QOtherwise, It gives you an id for the slot

® |_oad asset into the slot (but might stream)

® Play the playback slot
® Playing is a property of the slot, not asset
® Playback slot has other properties, like volume

® Release the slot when the sound Is done
® This is usually done automatically

e —

44 Game Audio tggeamedesiglninitia’ci\(e

lllllllllllllllll

Application Design

45

Slot

Slot

Slot

Slot

]J Need to A
remember
j\\ the slot i1d)

Game Audio

\Volume
IS property

of a slot!

Why This i1s Undesirable

® Tightly couples architecture to sound engine
® All controllers need to know this playback slot id
® Playback must communicate id to all controllers

® |nstances usually have a semantic meaning
® Example: Torpedo #3, Ship/crate collision
® Meaning is independent of the slot assigned
® \Would prefer to represent them by this meaning

® Solution: Refer to instances by keys

e —

the . e e e
i amedesigninitiative
46 G ame AUdI 0 g §c0rnell university

Application Design

Slot

(7

N

Slot

Slot

[[Slot]] N
/(Assign this a
j\\key identifier

y

47 Game Audio tgh?nnedesigminiti;atiye

ttttttttttttttttttt

e —

The AudioEngine API

/**
* Plays the given sound, and associates 1t
with the specified key.

*

* @param key the reference key for the
sound effect

* (@param sound the sound effect file to
play

* @param loop whether to loop
indefinitely

*

*/@param volume the sound vdly” Refer to

Instance

void play(const string key, cornft
std: :shared ptr<Sound>& sound)

logically

Jg void stop (const stripa.key) ; gamedesigninitiative

at cornel 11 university

Stopping Sounds

® Would like to know when a sound is finished
® To free up the slot (if not automatic)
® To stop any assoclated animation

® To start a follow-up sound

® Two main approaches

® Polling: Call an isPlaying () method/function
® Callback: Pass a listener to the engine

® AudioEngine allows both approaches

e —

49 Game Audio gamedesigninitiative
at cornell university

Gapless Playback

® Gapless playback requires a queue
® Queue immediately plays next sound on completion
® |deally with some crossfade to prevent pops

® Supported by class AudioQueue

® Builtontop of AudioEngine; use allocQueue ()
method

® Permanently takes over a slot for the queue
® (Can have multiple queues — as many as there are slots
® But no simultaneity guarantee between queues

® AudioQueue Is kind of similar to AudioEngine

= ® Butno need for keys, astheke,is only one slot gm

The AudioQueue API

/**
* Adds the given sound to the queue, to play

when possible.
*

* (@dparam sound the sound effect file to
play

* dparam loop whether to loop
indefinitely

* @param volume the sound volume

* (dparam fade number oL seconds to fade
in ~

*/ No need
vold enqueue (const std::shared pt forakey
sound) ;

2, void advance (usigne@ kRl steps) ; gamedesigninitiative

aaaaaaa 11 university

Problem with the Slots Model

® All controls are embedded in the slot

52

® Example: Volume, looping, play position
® Restricted to a predetermined set of controls

Modern games want custom sound-processing
® User defined sound filters (low pass, reverb)

® Advanced equalizer support

® Support for surround and 3D sound

® Procedural sound generation

e —

Game Audio tggeamedesiglninitia’ciye

lllllllllllllllll

DSP Processing: The Mixer DAG

3~
3~

Em-
e

QQ

the o
53 Game Audio gamede51§cr(}r1$tlatwe

uuuuuuuu

f

Example: UDK Kismet

EiranolEs sacEgr

Tringer_& Uses

ampare Baal

e o)

i [
=25z

|

Flay Sotrd
HlEy G

Blaw Saums

ElEy

Eleje]|

i i —
/| ER ST = jufs[=

i (e[-
Ui T

TErr Sig) Titir O FF
T T 1 zie|=ir

Naraes

L
EINE

o e
Sl = b e, T

Game Audio

the . o ey g
gamedesigninitiative

at cornell university

Example: FMOD

/" Set Parameter [Set Parameter

€ Event Tick ’-EF' gquence

(R —

55 Game Audio gamedesigninitiative

at cornell university

Example: Pure Data

- r S0_timbre

ig- .\I exturs _Mixe:
L

TIMBRE IMPLEMENTATION

100

aboscd~ $D—wa.'.re_shap=

tabread 50-timbre osd hip= T tabread S0=timbre_table tabread 50-timbre_phasor tabread SO0-timbre_nolsd
-
T = T T
S0-timbre_osc S0-timbre_table S0-timbre_phasor -n:'ise~ S0=timbre_noise
M o

\ e g - $0_£0 f
r 50_£0 '.‘ "‘. E 50_f0 ! I1 0 /
; phaso e . A 5icg- J
g:w&-- 440 ;r Q. I ../ I -

(R —

56 Game Audio gamedesigninitiative

at cornell university

The Slot Model is a Special Case

S7

@ \/(Interface to set state:
4_\volume, pan, fadeout

. = (D
-~ N
ey = (N
-~

e —

Game Audio tgh?nnedesigminiti;atiye

ttttttttttttttttttt

The Slot Model is a Special Case

@ \/(Input has scheduling
iy features as well
oy = (D
-~ i
(Queie) emoy > (N
-~

{ All happens behind scenes of AudioEngine interface.]

58 Game Audio tgh?nnedesigminiti;atiye

ttttttttttttttttttt

The Slot Model is a Special Case

N
v, = (D

- .)

[Theoretically input should accept any audio subgraph—]

59 Game Audio tg%?arnedesigminitiz'ati\‘fe

ttttttttttttttttttt

The AudioEngine Revisited

60

/**
* Plays the given sound, and associates 1t
with the specified key.

*

* @param key the reference key for the
sound effect

* (@param node the audio node to play

* @param loop whether to loop
indefinitely

* (dparam volume the sound Kolume
*/
vold play(const string key, coimNst Refer to

std::shared ptr<AudioNode>& nod€) HBche
logically

vold stop(const string key);

Game Audio tgﬂg?amedesigmin&tiz'atiye
vold setVolume (const string key, float ———"

The AudioEngine Revisited

@.

/**
* Plays the given sound, and associates 1t
with the specified key.

the

volid play(const string key, const REﬂHtO
std::shared ptr<AudioNode>& nodf) |n$ance
_ logically

vold stop(const string key);

Game Audio tggeémedesigmin&tia’ciye
vold setVolume (const string key, float ———"

Using AudioNode in AudioEngine

62

Normal playback is built on top of it
® Uses sound->createNode () to getyour node
® So just as fully featured as normal playback

But the node must implement completed ()
® This is optional method for AudioNode subclasses
® The default implementation always returns false
® But that means the sound never finished playing

® So the scheduler cannot free slot for new sound

the . e e e
i amedesigninitiative
G ame AUdI 0 g §c0rnell university

AudioNode Classes in CUGL

® AudioPlayer
® Single playable instance for a sound asset

® AudioFader
® [ade-in, fade-out and cross-fade effects

® AudioMixer
® Group several simultaneous nodes together

® AudioScheduler
® Used to queue up sounds in a sequence

e —

63 Game Audio tg};marnedesiglﬂinitiati\(e

lllllllllllllllllll

AudioNode Classes in CUGL

® AudioPanner
® Simple stereo channel panning

® AudioSpinner
® | ike panner but works on 7.1 sound fields

® AudioResampler
® Converts audio to different sample rate

® AudioReverb
® Creates echo effects

e —

64 Game Audio tg};marnedesiglﬂinitiati\(e

lllllllllllllllllll

Application: Vertical Layering

65

~Create with
createNod

Slot

AssIgn
to slot

. samedesigninitiative
Game Audio 8 "B ernelunversty

Application: Vertical Layering

-

Control
volume
Individually

~Create with
createNod

66 Game Audio tgﬂg?amedesigminitiz'ati\‘fe

lllllllllllllllllll

Application: Vertical Layering

67

-

Control \/
Vvolume

audioMixer completes when

all of its input nodes do

createNod

[Tireate with

e () o

the . e e e
i amedesigninitiative
G ame AUdI 0 g a%cornell university

Two Special AudioNodes

® Class AudioOutput

® Terminal node of the graph AudioOutput

® Represents output device

® Can be named or default

® Defines channels, sample rate AudioOutput

® Class AudioInput
® [nitial node of the graph
® Represents input device

AudioOutput
® Can be named or default

® May or may not match ouput

68 Game Audio

Two Special AudioNodes

® Class AudioOutput
® Terminal node of the graph Audiolnput
® Represents output device
® Can be named or default
® Defines channels, sample rate

Audiolnput

® Class AudioInput
® [nitial node of the graph

® Represents input device : G
Audiolnput
® Can be named or default BlackHole

® May or may not match ouput

69 Game Audio

Two Special AudioNodes

® Class AudioOutput
® Terminal node of the graph

® Represents output device

® Represents input device
® Can be named or default BlackHole
¢ May or may not match ouput

70 Game Audio famedesigninitiat signinitiative

Summary

® Audio design Is about creating soundscapes
® Music, sound effects, and dialogue
® Combining sounds requires a sound engine

® Cross-platform support is a problem
® | icensing issues prevent a cross-platform format
® \fry little standardization in sound APIs

® Best engines use digital signal processing (DSP)
® Mixer graph is a DAG supporting sound effects
® CUGL has some early support for all this

e —

the . e e e
i amedesigninitiative
7 1 G ame AUdI 0 g §c0rnell university

	Slide 1: Game Audio
	Slide 2: History of Sound in Games
	Slide 3: History of Sound in Games
	Slide 4: History of Sound in Games
	Slide 5: History of Sound in Games
	Slide 6: History of Sound in Games
	Slide 7: The Technical Challenges
	Slide 8: File Format vs Data Format
	Slide 9: Game Audio Formats
	Slide 10: Game Audio Formats
	Slide 11: Game Audio Formats
	Slide 12: Which Formats Should You Choose?
	Slide 13: Which Formats Should You Choose?
	Slide 14: Linear PCM Format
	Slide 15: Linear PCM Format
	Slide 16: Linear PCM Format
	Slide 17: Linear PCM Format
	Slide 18: Linear PCM Format
	Slide 19: Linear PCM Format
	Slide 20: Playing Sound Directly
	Slide 21: Playing Sound Directly
	Slide 22: Direct Sound in CUGL: AudioNode
	Slide 23: Direct Sound in CUGL: AudioNode
	Slide 24: The Latency Problem
	Slide 25: Playing Sound Directly
	Slide 26: Playing Sound Directly
	Slide 27: How Streaming Works
	Slide 28: How Streaming Works
	Slide 29: How Streaming Works
	Slide 30: Handling Multiple Sounds
	Slide 31: Handling Multiple Sounds
	Slide 32: Why is Mixing Hard?
	Slide 33: We Want Something Simpler!
	Slide 34: We Want Something Simpler!
	Slide 35: Cross-Platform Sound Engines
	Slide 36: Proprietary Sound Engines
	Slide 37: Proprietary Sound Engines
	Slide 38: What about SDL?
	Slide 39: Solution: CUGL Audio Classes
	Slide 40: Solution: CUGL Audio Classes
	Slide 41: Classic Model: Playback Slots
	Slide 42: Classic Model: Playback Slots
	Slide 43: Classic Model: Playback Slots
	Slide 44: Playing a Sound with Slots
	Slide 45: Application Design
	Slide 46: Why This is Undesirable
	Slide 47: Application Design
	Slide 48: The AudioEngine API
	Slide 49: Stopping Sounds
	Slide 50: Gapless Playback
	Slide 51: The AudioQueue API
	Slide 52: Problem with the Slots Model
	Slide 53: DSP Processing: The Mixer DAG
	Slide 54: Example: UDK Kismet
	Slide 55: Example: FMOD
	Slide 56: Example: Pure Data
	Slide 57: The Slot Model is a Special Case
	Slide 58: The Slot Model is a Special Case
	Slide 59: The Slot Model is a Special Case
	Slide 60: The AudioEngine Revisited
	Slide 61: The AudioEngine Revisited
	Slide 62: Using AudioNode in AudioEngine
	Slide 63: AudioNode Classes in CUGL
	Slide 64: AudioNode Classes in CUGL
	Slide 65: Application: Vertical Layering
	Slide 66: Application: Vertical Layering
	Slide 67: Application: Vertical Layering
	Slide 68: Two Special AudioNodes
	Slide 69: Two Special AudioNodes
	Slide 70: Two Special AudioNodes
	Slide 71: Summary

