the

gamedesigninitiative
at cornell university
_ecture 8

2D Animation

Animation Basics: Sprite Sheets

® Animation is a sequence of hand-drawn frames

® Smoothly displays action when change quickly
® Also called flipbook animation

® Arrange animation in a sprite sheet (one texture)
® Software chooses which frame to use at any time
® Programmer is actually the one doing animation

2 2D Animation tg%?arnedesigminitiz'ati\‘fe

aaaaaaa 11 university

CUGL Has Two Options

SpriteNode SpriteSheet
® Scene graph node ® Astand-alone class
® Fits into JSON specification e But familiar drawing API
® Draw automatically ® Pass SpriteBatch & transform

® Does require a scene graph ® Not part of a scene graph
® Limits drawing flexibility ® Has a lot more flexibility

® Bad for some perspectives ® But less input from designer
(e.g. isometric)

3 2D Animation tggeameclesiglninitir;vciye

aaaaaaa 11 university

CUGL Has Two Options

SpriteNode SpriteSheet
® Scene graph node ® Astand-alone class
® Fits into JSON specification e But familiar drawing API
® Draw automatically ® Pass SpriteBatch & transform

® Does require a scene graph ® Not part of a scene graph
® Limits drawing flexibility ® Has a lot more flexibility

® Bad for some perspectives ® But less input from designer
(e.g. isometric)

Both are stateful!

These are not assets.

i i amedesigninitiative
4 2D Anlmatl On g §c0rnell universi

versity

Adjusting your Speed

® Do not want to go too fast
® 1 animation frame =16 ms
e Walk cycle = 8/12 frames
e Completed in 133-200 ms

® Resetitto >0 at new frame

® Simple but tedious

® Have to do for each object
® Assumes animation is in a loop

at cornell university

5 2D Animation b medesigninitiative

Animation Concept: Keyframes

After Effects

B
*
T
T
T
ol
ol
]

Current 0 Loop Start ™ Auto Key Graph
BB =Ishift *F Offset ~ Adjust

LN DR B R B~

run I
= & front-thigh
Rotate

Translate

AR ETE SRR TR AT
150 I I

= rear-thigh
Rotate
Translate

= rearshin
Rotate

- « front-upper-arm
Rotate

PE—
the . e el .
gamedeSIgnmltlatlve

at cornell university

KeyFrames

® Animator creates a timeline
® Specifies how long animation will last
® Specifies when a change happens (key frames)

® |deally, want this in game engine too.

15725

1 second
L - ¢ > ¢

0.2 secs 0.3 secs 0.4 secs 0.1 secs

I 2D Animation tgﬂg?amedesigminitiz'ati\‘fe

lllllllllllllllllll

KeyFrames

® Animator creates a timeline
® Specifies how long animation will last
® Specifies when a change happens (key frames)

® |deally, want this in game engine too.

kR

(NO'[ICG this is
1 second non- unlform
* ® & @ &

0.2 secs 0.3 secs 0.4 secs 0.1 secs

8 2D Animation gamedeSIgmmhatlve

lllllllllllllllllll

KeyFrames in CUGL

ActionFunction ActionTimeline
Represents an animation ® Manages active animations
® User-defined function ® Assigns them a duration
® No return; just animates ® Tracks their current state
Function takes ® Has a separate update loop
® Avalue [0,1] ® [nitialization step at start
® A state (begin/update/end) ® Update step to increment
CUGL has several factories @ Similar to asset manager
® Create common animations ® Animations have key id
® [deal with scene graphs ® Runupdate () tofit

bUdget e
2D Animation gamedesigninitiative

llllllllllllllll y

KeyFrames in CUGL

10

Initialize

Update

Access

ActionTimeline

2D Animation

Manages active animations
® Assigns them a duration
® Tracks their current state

Has a separate update loop
® [nitialization step at start
® Update step to increment

Similar to asset manager

® Animations have key id

® Runupdate () tofit
budget

the . e el .
gamedeSIgnmltlatlve
aaaaaaa 11 university

Executing Actions: Sprite Sheets

auto mgr =
ActionTimeline::alloc() ;

std::vector<int> frames;
frames.push back(fl);

frames.push back (£8);

auto seqg =
AnimateSprite::alloc (frames)

.
4

auto action = seqg-
>attach (sprite);

mgr-

>activate (key,action,duratio

n);

dhile (mgr->isActive (keg)Anination
Mmar—>S111Aate (TTMEQSTEDY) -

sprite

the . P .
gamedeSIgrumtlatlve
at cornel 11 university

Executing Actions: Sprite Sheets

auto mgr = sprite

ActionTimeline: :allw Allocate
std: :vector<int> frail uinEine

frames.push back(fl);

frames.push back (£8);

auto seqg =
AnimateSprite::alloc (frames)

.4

.
4

auto action = seqg-

>attach (sprite); Progress
the loop

mgr-

>activate (key,action,duratio

n);

the . o ey g
gamedesigninitiative

%i le (mgr_>i SACtive (ke 9@ Anin{ation at cornell university
Mmar—>S111Aate (TTMEQSTEDY) -

Executing Actions: Sprite Sheets

auto mgr =
ActionTimeline::alloc() ;

std::vector<int> f:

frames.push back(f. s

the frames
frames.push back (£8);

auto seq = | Create a
AnimateSprite::alloc (fr factory

.
4

auto action = seqg-
>attach (sprite);

mgr-

>activate (key,action,duratio

n);

Wile (mgr->isActive (ke gl Anination
Mmar—>S111Aate (TTMEQSTEDY) -

sprite

.4

the . o ey g
gamedesigninitiative

at cornell university

Executing Actions: Sprite Sheets

auto mgr =
ActionTimeline::alloc() ;

std::vector<int> frames;
frames.push back(fl);

frames.push back (£8);

auto seqg = | Create

AnimateSprite::alloc (fr an action

o
4

auto action = seqg-

| Run for
>attach (sprite) ;

a given

mgr= duration

>activate (key,action,duracio

n);

¥hile (mgr->isActive (ke¢)Aninfation
mMmMatr—>S111Aa3ate (TTMEQSTEPY) -

sprite

.4

the . P .
gamedeSIgrumtlatlve
at cornel 11 university

Executing Actions: Sprite Sheets

auto mgr = sprite

ActionTimeline::alloc() ;

std::vector<int> frames;
frames.push back(fl);

frames.push back (£8);

auto seq =

AnimateSprite::alloc (fra Cangﬂve

non-uniform

| Change
IS abrupt

o
4

weights

auto action = seqg-
>attach (sprite);

mgr-—
>activate (key,action,duratio

n); P —
Wile (mgr->isActive (ke Aningation gamedesigninitiative

mMmMatr—>S111Aa3ate (TTMEQSTEPY) -

What About the Abrupt Change?

® Not an issue If animation is fast
® Frames change too fast to notice
® Movies are fine with 24 fps

® But what If animation is slower?
® Could make more frames
® But much more work on artist

® \Want a way to make new frames
® |deally done by the computer
® (Called tweening (in-betweening)

® Aside: generative Al?

16 2D Animation

the . P .
gamedemgmrutlatlve
aaaaaaa 11 university

What About the Abrupt Change?

® Not an issue If animation is fast
® Frames change too fast to notice
® Movies are fine with 24 fps

® But what If animation is slower?
® Could make more frames
® But much more work on artist

® \Want a way to make new frames
® |deally done by the computer
® (Called tweening (in-betweening)

® Aside: generative Al?

17 2D Animation

the . P .
gamedeSIgnmltlatlve
aaaaaaa 11 university

Simple Approach: Crossfade Blending

* LA

® |inear Interpolation on colors
re =try + (1 —t)ry
gec — tga (— t)gb >Note weights sum to 1.0
b, = tb, + (— t)bb/

/|

t=0.0

(R —

18 2D Animation té?amedesigninitiatiye

lllllllllllllllllll

Simple Approach: Crossfade Blending

AT A

t=0.3

® Linear interpolation on colors
re =try + (1 —t)ry
ge = tge + (1 —t)gy, > Note weights sum to 1.0
be =ty + (1 — t)bb/

(R —

19 2D Animation té?amedesigninitiatiye

lllllllllllllllllll

Simple Approach: Crossfade Blending

* LA

® |inear Interpolation on colors
re =try + (1 —t)ry
gec — tga (— t)gb >Note weights sum to 1.0
b, = tb, + (— t)bb/

(R —

20 2D Animation té?amedesigninitiatiye

lllllllllllllllllll

Simple Approach: Crossfade Blending

* LA

® |inear Interpolation on colors
re =try + (1 —t)ry
gec — tga (— t)gb >Note weights sum to 1.0
b, = tb, + (— t)bb/

(R —

21 2D Animation té?amedesigninitiatiye

lllllllllllllllllll

Simple Approach: Crossfade Blending

* LA

® |inear Interpolation on colors
re =try + (1 —t)ry
gec — tga (— t)gb >Note weights sum to 1.0
b, = tb, + (— t)bb/

(R —

22 2D Animation té?amedesigninitiatiye

lllllllllllllllllll

Tweening: Interpolating In-Betweens

® Act of linear interpolating between animation frames
® Because we cycle filmstrip slower than framerate

® [mplements a form of motion blur

® |f animation designed right, makes it smoother

23 2D Animation tgheamedesigninitiatiye

lllllllllllllllllll

Tweening and Transforms

+

IR

B

® Any transform is represented by a matrix
® Can linearly interpolate matrix components
® (Gives a reasonable transform “in-between”

® Aside: This Is a motivation for quaternions
® Gives smoother interpolation for rotation

24

ttttttttttttttttttt

2D Animation tgh?nnedesigminiti;atiye

Application to Sprite Animation

® Movement is two things
® Animation of the filmstrip
® Translation of the image
® These two must align

® Example: Walking
® [oot is point of contact
® “Stays in place” as move
® This constrains translation

® Make movement regular
® Measure distance per frame
® Keep same across frames

the . P .
gamedeSIgnmltlatlve
aaaaaaa 11 university

Application to Sprite Animation

® Movement is two things
® Animation of the filmstrip
® Translation of the image
® These two must align

® Example: Walking
® [oot is point of contact
® “Stays in place” as move
® This constrains translation

® Make movement regular
® Measure distance per frame
® Keep same across frames

the . P .
gamedeSIgrumtlatlve
aaaaaaa 11 university

Application to Sprite Animation

® Movement is two things
® Animation of the filmstrip
® Translation of the image
® These two must align

® Example: Walking
® [oot is point of contact
® “Stays in place” as move
® This constrains translation

® Make movement regular P Distance
® Measure distance per frame contact forward

® Keep same across frames

the . e el .
gamedeSIgnmltlatlve
aaaaaaa 11 university

Executing Actions: Movement

// Create the factories
auto seqgl =
AnimateSprite::alloc (frames
) 7

auto seqg2 =
MoveBy::alloc (Vec2 (PACE,0))

.
14

// Create the actions
auto flip = seqgl-
>attach (sprite) ;

auto shift = seqg2-
>attach (sprite) ;

// Activate and animate
mgr—->activate (keyl, flip,
duration) ;

L N L EE A I 20 A PR el B

the . e el .
gamede51gn1mt1atlve

at cornell university

Executing Actions: Movement

// Create the factories

auto seqgl =
AnimateSprite::alloc (frames

) 7 Currently only
auto seqg’2 =[EEEJdelgicleNely

MoveBy: :all EESEEUEEY F, 0))

.
14

// Create the actions
auto flip = seqgl-
>attach (sprite);

auto shift = seqg2- Ensures
>attach (sprite);

animations
in sync

// Activate and animate
mgr—->activate (keyl, flip,
duration) ;

L N L EE A I 20 A PR el B

the . e el .
gamede51gn1mt1atlve

at cornell university

Tweeing and Easing Functions

® Basic approach to tweening
® Specify duration to animate

30

® Sett=0atbeginning
® Normalizet=1atend
® [nterpolate value with t

How does t change?
® Usually done linearly
® Could be some other way

Easing: how to change t
® Used for bouncing effects
® Best used for transforms

2D Animation

1

0

start

Duration

end

the . e e e
gamedesigninitiative
at cornell university

Tweeing and Easing Functions

® Basic approach to tweening
® Specify duration to animate

31

® Sett=0atbeginning
® Normalizet=1atend
® [nterpolate value with t

How does t change?
® Usually done linearly
® Could be some other way

Easing: how to change t
® Used for bouncing effects
® Best used for transforms

2D Animation

1

0

start

1

0

Duration

end

start

Duration

end

the . o egs s
gamedesigninitiative
aaaaaaa 1l university

Classic Easing Functions

,,/
casein
|'

a
/ 4 /
faEL‘Gut cascin cazcUutin
..-"'--_-\--h"m—

/ N
/ / g
7N\ /
VA / L/
easelnBounce e“lﬂ}utﬂuuncc easelnDutBounce easelutinBounce
| / v [i
| | | {\/u_ﬁﬁ,l
} | V
L |I
easeDutElastic ecaseln{utElastic easelutinElastic

32 2D Animation

the . e el .
gamede51gn1mt1atlve

at cornell university

Classic Easing Functions

casein caseDut caseinDut cascOutin
— —

o g '.\"r
ol . i~ ==
_ : i / /
/ | / f
v, / i Ly ;’I
easelnBounce efpedutBounce easelnDutBounce easelutinBounce
| f
Vo~ i
[l ' e |~_|. . —
' W | |
! ' | , |
| | | il
| ~— w1
| f { W \f
W
J |
—_ = S | r I J r
easeDutElastic 1-uxcl11le|tEl:|s1lc easelutinElastic

easelnElastic | |
|

N

¥

LY

JE— e —
the . e .
gamedemgmruhatwe

at cornell university

2D Animation

33

Application to Sprite Animation

15%%

1 second

4 ¢ ¢ ¢ 4

0.2 secs 0.3 secs 0.4 secs 0.1 secs

PE—
the . e e .
gamede51gn1mt1atlve

at cornell university

Application to Sprite Animation

Frame f

0.2 sel 1 secs

Timet

(R —

ttttttttttttttttttt

Aside: Animating vs Rendering

® You do not have to animate in the main thread
® Main thread is for rendering (drawing on screen)

® But animation is simply “posing” your models

® Allows for smoother animation (VSync problem)

Game Thread Animation
Thread

*

Draw

(R —

36 2D Animation tglgiarnedesigminitiz'ati\‘fe

lllllllllllllllllll

Example: Hi FI Rush

Using Peppermint

Hold m
Release to fire

(

e 0000
the

2D Animati
Animation gamedesigninitiative

at cornell university

Modular Animation

® Break asset into parts
® Natural for joints/bodies
® Animate each separately

® Cuts down on filmstrips
® Most steps are transforms
® \ery natural for tweening
® Also better for physics

® Several tools to help you
® E.g. After Effects, Spine
® Great for visualizing design

38 2D Animation

the . P .
gamede51gn1n1t1atlve
aaaaaaa 11 university

Modular Animation

® Break asset into parts
® Natural for joints/bodies
® Animate each separately

® Cuts down on filmstrips
® Most steps are transforms
® \ery natural for tweening
® Also better for physics

® Several tools to help you
® E.g. After Effects, Spine
® Great for visualizing design

39 2D Animation

the . P .
gamede51gn1n1t1atlve
aaaaaaa 11 university

Modular Animation

® Break asset into parts
® Natural for joints/bodies
® Animate each separately

® Cuts down on filmstrips
® Most steps are transforms
® \ery natural for tweening
® Also better for physics

® Several tools to help you
® E.g. After Effects, Spine
® Great for visualizing design

40 2D Animation

the . P .
gamede51gn1n1t1atlve
aaaaaaa 11 university

Modular Animation

® Break asset into parts
® Natural for joints/bodies
® Animate each separately

® Cuts down on filmstrips
® Most steps are transforms
® \ery natural for tweening
® Also better for physics

® Several tools to help you
® E.g. After Effects, Spine
® Great for visualizing design

[Loose hit]
l&oxes

&l =
y S

AN B VAT

® |nside hit box can safely
® Transform with duration
® Tween animations
® Manage multiple actions

tttttttttttttttt y

41 2D Animation tg}fiamedesigmin&tiatiye

pine Demo

S p ne raptor = =R TS

} ‘ s/ O #Z = £ |collapse Expand
% Hierarchy
7 raptor
== root
@ raptor_arm_back
) raptor_front_arm
@ raptor_tongue
front_foot_goal
-~ hip
front_leg1
“ rear_leg1
taill
torsol
@® raptor_body
Pose : Rotate < Local 2 L5y X D 1 raptor_body
I : . d # saddle
torso2
rear_foot_goal

o

Weights Translate x| @ Parent = © |BY Images
Scale < World

Dopesheet Draw Order
B3 Images
Current 14 Loop Start Loop End o Auto Key £ Ski
{ £ ns
Collapse Expand @ »IShift ~ Adjust ap Offset / Animations
5% Events

14
& Constraints

LIS N L Y
walk | |||| | ||| IIII
= # torsol I ‘ I I
Rotate ;
Translate ‘
|
I

71 Mesh: raptor_body
[] []

. w00
the

2D Animation gamedesigninitiative

at cornell university

Basic ldea: Bones

43

2D Animation

the . o egs s
gamedesigninitiative

at cornell university

Basic |Idea: Bones

44

2D Animation

the . o ey g
gamedesigninitiative

at cornell university

Basic |Idea: Bones

Orientation |
(y-axis) ¢

Pivot
(origin)

Sprite
attached

Creates implicit
coordinate space

~

J

45 2D Animation gamedesigninitiative

lllllllllllll

eeeeee

Bones are Helrarchical

46

2D Animation

(R —

the . e e .
gamede51gn1mt1atlve
at cornell university

Bones are Helrarchical

BN

p
" Transforms

apply to
. children

\

(R —

the . e age g
47 2D Animation gamedesigninitiative
at cornell university

Bones are Helrarchical

48

2D Animation

~

Transforms
do not affect

~

. the parent

PE—
the . e el .
gamede51gn1mt1atlve

at cornell university

Recall: Scene Graph Hierarchy

Device/

Screen
Layer Coordinates |

Bounded
box Inside

)

Node

Coords relative
to parent box —_

49 2D Animation gamedesigninitiative

ttttttttttttttttttt

7)
_

Bones are a Scene Graph Visualization

e —

50 2D Animation tggeamedesiglninitia’ci\(e

lllllllllllllllll

Problem: Scene Graphs are Preorder

® Parents are drawn first
® Children are drawn in front
® |deal for Ul elements
® Bad for modular animation

® Solution: OrderedNode
® Puts descendents into a list

® Sorts based on priority value
® Draws nodes in that order

® Acts as a render barrier

® \What if nested
OrderedNode?

® [Fach OrderedNode IS a unit

® Priorities do not mix -
51 2D Animation tgheamedesignin&ti;atiye

tttttttttttttttt y

Problem: Scene Graphs are Preorder

® Parents are drawn first

® Children are drawn in front Ordered
® |deal for Ul elements FOETE

. Node
® Bad for modular animation

® Solution: OrderedNode
® Puts descendents into a list

® Sorts based on priority value
® Draws nodes in that order

® Acts as a render barrier

® \What if nested
OrderedNode?

® [Fach OrderedNode IS a unit

® Priorities do not mix -
52 2D Animation tgheamedesignin&ti;atiye

tttttttttttttttt y

Problem: Scene Graphs are Preorder

® Parents are drawn first

® Children are drawn in front Ordered
® |deal for Ul elements FOETE

. Node
® Bad for modular animation

® Solution: OrderedNode
® Puts descendents into a list

® Sorts based on priority value
® Draws nodes in that order

® Acts as a render barrier

® \What if nested
OrderedNode?

® [Fach OrderedNode IS a unit

® Priorities do not mix -
53 2D Animation tgheamedesignin&ti;atiye

tttttttttttttttt y

Problem: Scene Graphs are Preorder

® Parents are drawn first

® Children are drawn in front Ordered
® |deal for Ul elements FOETE

. Node
® Bad for modular animation

® Solution: OrderedNode

® Puts descendents into a list
® Sorts based on priority value
® Draws nodes in that order

- g ——

® Acts as a render barrier

® \What if nested
OrderedNode?

® [Fach OrderedNode IS a unit

® Priorities do not mix
54 2D Animation gamedesigninitiative

————————————

tttttttttttttttt y

o e o e o e e e o e e

Problems With Tweening

Transform Tweening

3

Physical Animation

Complete Disaster

55 2D Animation

at cornell university

Problems With Tweening

auto seqg =)

RotateBy::alloc (90.0f); What if we change our
auto action - seq- mind before 2 seconds?
>attach (sprite) ; _/

mgr-

>activate (key,action,2.0f)

°
14

at cornel 11 university

56 2D Animation té?amedesigninitiative

Problems With Tweening

auto seq = 4)
RotateBy::alloc(90.0f) ; Compatible: Combine
auto action - seqg- Incompatible: Replace
>attach (sprite); _ J
mgr-

>activate (key,action,2.0f)

°
14

57 2D Animation té?amedesigninitiatiye

aaaaaaa 11 university

Combining Animations

® Characters do a lot of things
Landing Animation e Run, jump, duck, slide

'%@ % ﬁ ﬁ ﬁ ﬁ ® Fire weapons, cast spells

® Fidget while player AFK

® \Want animations for all

® |s loop appropriate for each?
® How do we transition?

® |dea: shared boundaries
® End of loop = start of another

® Treat like advancing a frame

Idling Animation

tttttttttttttttt y

58 2D Animation t§§1medesigmin&tiati\‘fe

Combining Animations

® Characters do a lot of things
Landing Animation e Run, jump, duck, slide

ﬁ e Fire weapons, cast spells
® Fidget while player AFK

® \Want animations for all

[[Not a Loop]

® |s loop appropriate for each?
® How do we transition?

ﬁ ﬁ ﬁ ﬁ ﬁ ® |dea: shared boundaries
[.\, ".'x
/ ® End of loop = start of another

]]] ® Treat like advancing a frame
Idling Animation)

tttttttttttttttt y

59 2D Animation tgheamedesignin&ti;atiye

Combining Animations

® Characters do a lot of things
Landing Animation e Run, jump, duck, slide

% @ % ﬁ ® Fire weapons, cast spells
4 e Fidget while player AFK

[[Transition] e \Want animations for all

® |s loop appropriate for each?
® How do we transition?

ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ e |dea: shared boundaries
® End of loop = start of another
Idling Animation ® Treat like advancing a frame

tttttttttttttttt y

60 2D Animation té?amedesignin&tiatiye

Combining Animations

® Characters do a lot of things

Landing Animation ® Run, jump, duck, slide

® [ire weapons, cast spells
® Fidget while player AFK

[[Transition] e \Want animations for all

® |s loop appropriate for each?

® How do we transition?

ﬁ ﬁ ﬁ ﬁ ﬁ ﬁ ® |dea: shared boundaries
3! Butdonotdraw
. . o - ends twice! 5
Idling Animation

61 2D Animation téeamedesigninitiatiye

aaaaaaa 11 university

Animation and State Machines

® |dea: Each sequence a state
® Do sequence while in state
® Transition when at end
® Only loop if loop in graph

® A graph edge means...
® Boundaries match up
® Transition is allowable

® Similar to data driven Al
® Created by the designer
® |Implemented by programmer

® Modern engines have tools

lllllllllllllllllll

62 2D Animation té?amedesigninitiatiye

Animation and State Machines

® |dea: Each sequence a state
® Do sequence while in state
® Transition when at end
® Only loop if loop in graph

Continuing
Action

® A graph edge means...
® Boundaries match up
® Transition is allowable

One time
action

® Similar to data driven Al
® Created by the designer
® |Implemented by programmer
® Modern engines have tools

lllllllllllllllllll

63 2D Animation té?amedesigninitiatiye

Complex Example: Jumping

64

‘ stand2crouch \

crouch

takeoff

2D Animation

Complex Example: Jumping

.

Jump Press]

[{ Jump Release

65

[[Near Ground

(R —

2D Animation gamedesigninitiative

lllllllllllllllllll

Complex Example: Jumping

66

fTransition state
needed to align

. the sequences

2D Animation

The Responsiveness Issue

Tightness of
the gameplay

preventing jump

Additional delay J

67 2D Animation

Summary

® Standard 2D animation is flipbook style

® Create a sequence of frames in sprite sheet
® Switch between sequences with state machines

® Tweening supports interpolated transitions
® Helpful for motion blur, state transitions
® Transforms can be combined with easing functions

® Professional 2D animation uses modular sprites

® Scene graphs are a simplified form of model rigging
® State machine coordination can be very advanced

the . e e e
i i amedesigninitiative
68 2D Anlmatl On g §c0rnell university

	Slide 1: 2D Animation
	Slide 2: Animation Basics: Sprite Sheets
	Slide 3: CUGL Has Two Options
	Slide 4: CUGL Has Two Options
	Slide 5: Adjusting your Speed
	Slide 6: Animation Concept: Keyframes
	Slide 7: KeyFrames
	Slide 8: KeyFrames
	Slide 9: KeyFrames in CUGL
	Slide 10: KeyFrames in CUGL
	Slide 11: Executing Actions: Sprite Sheets
	Slide 12: Executing Actions: Sprite Sheets
	Slide 13: Executing Actions: Sprite Sheets
	Slide 14: Executing Actions: Sprite Sheets
	Slide 15: Executing Actions: Sprite Sheets
	Slide 16: What About the Abrupt Change?
	Slide 17: What About the Abrupt Change?
	Slide 18: Simple Approach: Crossfade Blending
	Slide 19: Simple Approach: Crossfade Blending
	Slide 20: Simple Approach: Crossfade Blending
	Slide 21: Simple Approach: Crossfade Blending
	Slide 22: Simple Approach: Crossfade Blending
	Slide 23: Tweening: Interpolating In-Betweens
	Slide 24: Tweening and Transforms
	Slide 25: Application to Sprite Animation
	Slide 26: Application to Sprite Animation
	Slide 27: Application to Sprite Animation
	Slide 28: Executing Actions: Movement
	Slide 29: Executing Actions: Movement
	Slide 30: Tweeing and Easing Functions
	Slide 31: Tweeing and Easing Functions
	Slide 32: Classic Easing Functions
	Slide 33: Classic Easing Functions
	Slide 34: Application to Sprite Animation
	Slide 35: Application to Sprite Animation
	Slide 36: Aside: Animating vs Rendering
	Slide 37: Example: Hi Fi Rush
	Slide 38: Modular Animation
	Slide 39: Modular Animation
	Slide 40: Modular Animation
	Slide 41: Modular Animation
	Slide 42: Spine Demo
	Slide 43: Basic Idea: Bones
	Slide 44: Basic Idea: Bones
	Slide 45: Basic Idea: Bones
	Slide 46: Bones are Heirarchical
	Slide 47: Bones are Heirarchical
	Slide 48: Bones are Heirarchical
	Slide 49: Recall: Scene Graph Hierarchy
	Slide 50: Bones are a Scene Graph Visualization
	Slide 51: Problem: Scene Graphs are Preorder
	Slide 52: Problem: Scene Graphs are Preorder
	Slide 53: Problem: Scene Graphs are Preorder
	Slide 54: Problem: Scene Graphs are Preorder
	Slide 55: Problems With Tweening
	Slide 56: Problems With Tweening
	Slide 57: Problems With Tweening
	Slide 58: Combining Animations
	Slide 59: Combining Animations
	Slide 60: Combining Animations
	Slide 61: Combining Animations
	Slide 62: Animation and State Machines
	Slide 63: Animation and State Machines
	Slide 64: Complex Example: Jumping
	Slide 65: Complex Example: Jumping
	Slide 66: Complex Example: Jumping
	Slide 67: The Responsiveness Issue
	Slide 68: Summary

