
gamedesigninitiative
at cornell university

the

Scene Graphs

Lecture 6

gamedesigninitiative
at cornell university

the

Scene Graphs2

Recall: Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

Active Dormant

gamedesigninitiative
at cornell university

the

onStartup()

 Handles the game assets
 Attaches the asset loaders
 Loads immediate assets

 Starts any global singletons
 Example:

AudioChannels

 Creates any player modes
 But does not launch yet

 Waits for assets to load
 Like GDXRoot in 3152

Architecture Revisited3

Recall: The Application Class

update()

 Called each animation frame

 Manages gameplay
 Converts input to actions
 Processes NPC behavior
 Resolves physics
 Resolves other interactions

 Updates the scene graph
 Transforms nodes
 Enables/disables nodes

gamedesigninitiative
at cornell university

the

onStartup()

 Handles the game assets
 Attaches the asset loaders
 Loads immediate assets

 Starts any global singletons
 Example:

AudioChannels

 Creates any player modes
 But does not launch yet

 Waits for assets to load
 Like GDXRoot in 3152

Architecture Revisited4

Recall: The Application Class

update()

 Called each animation frame

 Manages gameplay
 Converts input to actions
 Processes NPC behavior
 Resolves physics
 Resolves other interactions

 Updates the scene graph
 Transforms nodes
 Enables/disables nodes

gamedesigninitiative
at cornell university

the

 Use render() method
 Called after update()
 Clears screen first
 Uses clear color field

 Can use any OpenGL
 Included in CUBase.h
 Best to use OpenGLES

(subset of OpenGL)

 Or use a
SpriteBatch

 Mostly like in 3152

void render() {

glEnableVertexAttribArray(0);

glBindBuffer(GL_ARRAY_BUFFER,

vertexbuffer);

glVertexAttribPointer(0, 3, GL_

FLOAT,

GL_FALSE, 0, (void*)0);

 glDrawArrays(GL_TRIANGLES,

0, 3);

glDisableVertexAttribArray(0);

}

Scene Graphs5

Drawing in CUGL

void render() {

 _batch->begin();

 _batch-

>draw(image1,Vec2(10,10));

 _batch-

>draw(image2,Vec2(50,20));

 _batch->end();

} Attribute of Scene2

gamedesigninitiative
at cornell university

the

Scene Graphs6

The Scene Graph

Node

Scene

Node Node

Node Node Node Node Node Node

Or any
subclass

Node

gamedesigninitiative
at cornell university

the

Scene Graphs7

The Scene Graph

Node

Scene

Node Node

Node Node Node Node Node Node

Node

Game
Camera

Bounded
box inside

Coords relative
to parent box

gamedesigninitiative
at cornell university

the

Scene Root

Scene Graphs8

Each Node is a Coordinate System

Node Node

Node
Node

Node

Node

gamedesigninitiative
at cornell university

the

Scene Root

Scene Graphs9

Each Node is a Coordinate System

Node

Node

NodeNode

Node
Node

Node

Scene

Node

Node Node

Node

Node Node

gamedesigninitiative
at cornell university

the

Scene Root

Scene Graphs10

Each Node is a Coordinate System

Node Node

Node
Node

Node

Node

Origin

Origin

Origin
Origin

gamedesigninitiative
at cornell university

the

 Touch handler requires
 Which object touched
 Location inside object

 Scene graph is a search tree

 Check if touch is in parent
 … then check each child
 Faster than linear search

 But limit this to a search

 No input control in node
 Use polling over callbacks

Scene Graphs11

Motivation: Touch Interfaces

Scene

Node

Node

NodeNode

Node
Node

gamedesigninitiative
at cornell university

the

Scene Root

Scene Graphs12

Settings Pass Down the Graph

Transforms on parent
also transform children

gamedesigninitiative
at cornell university

the

Scene Root

Scene Graphs13

Settings Pass Down the Graph

Node

Node

Node Transparency on parent
also applies to children

gamedesigninitiative
at cornell university

the

Scene

Scene Graphs14

Settings Pass Down the Graph

Node

Node

Node Disabling the parent
also disables children

gamedesigninitiative
at cornell university

the

 Nodes have content size

 Width/height of contents
 Measured in node space
 But only a guideline:

content can be outside

 Nodes have an anchor

 Location in node space
 Percentage of width/height
 Does not affect the origin

 Both may affect position

Scene Graphs15

Anchors and Content

Node

Origin

Width

H
eig

h
t

gamedesigninitiative
at cornell university

the

 Nodes have content size

 Width/height of contents
 Measured in node space
 But only a guideline:

content can be outside

 Nodes have an anchor

 Location in node space
 Percentage of width/height
 Does not affect the origin

 Both may affect position

Scene Graphs16

Anchors and Content

Node

Width

H
eig

h
t

Anchor

(0,0)

gamedesigninitiative
at cornell university

the

 Nodes have content size

 Width/height of contents
 Measured in node space
 But only a guideline:

content can be outside

 Nodes have an anchor

 Location in node space
 Percentage of width/height
 Does not affect the origin

 Both may affect position

Scene Graphs17

Anchors and Content

Node

Origin

Width

H
eig

h
tAnchor

(0.5,0.5)

gamedesigninitiative
at cornell university

the

 Nodes have content size

 Width/height of contents
 Measured in node space
 But only a guideline:

content can be outside

 Nodes have an anchor

 Location in node space
 Percentage of width/height
 Does not affect the origin

 Both may affect position

Scene Graphs18

Anchors and Content

Node

Origin

Width

H
eig

h
t

Anchor

(1,0.5)

gamedesigninitiative
at cornell university

the

Scene Graphs19

Anchor and Position

Parent

Node

Child

Child

Origin

Anchor: (0,0)

Position: (150,50)

gamedesigninitiative
at cornell university

the

Scene Graphs20

Anchor and Position

Parent

Node

Origin

Anchor: (0.5,0.5)

Position: (150,50)

Child

Child

gamedesigninitiative
at cornell university

the

Layout Managers

 Not all devices have the same aspect ratio

 Sometimes, want placement to adjust to fit

Scene Graphs21

Screen

Screen

VS

gamedesigninitiative
at cornell university

the

Layout Managers

 Not all devices have the same aspect ratio

 Sometimes, want placement to adjust to fit

Scene Graphs22

Screen

Screen

Node

Node

VS

Node

Node

gamedesigninitiative
at cornell university

the

Layout Managers

Scene Graphs23

Parent Parent

Parent

AnchorLayout FlowLayout

GridLayout

Node

Node

Node

Node

Node

Node Node Node

Node Node

Node

Node

Node Node Node

Node

Node

Node

Node

gamedesigninitiative
at cornell university

the

Layout Managers

Scene Graphs24

Parent Parent

Parent

AnchorLayout FlowLayout

GridLayout

Node

Node

Node

Node

Node

Node Node Node

Node Node

Node

Node

Node Node Node

Node

Node

Node

Node

gamedesigninitiative
at cornell university

the

How to Use a Layout Manager

1. Create a layout manager

2. Assign a relative position to each child
 Example: middle left in an anchor layout
 Layout manager maps strings to layout
 Use the “name” string of the child node

3. Attach manager to the parent node

4. Call doLayout() on the parent

Scene Graphs25

gamedesigninitiative
at cornell university

the

Safe Area: Modern Phones

Scene Graphs26

Safe Area

UI elements should avoid
notch, rounded corners

But animations
should fill screen

gamedesigninitiative
at cornell university

the

Safe Area: Modern Phones

Scene Graphs27

Scene

Game
Node

UI
NodeArt that

must fill
the screen

Elements
to stay in
safe area

See Display class to find safe
area

gamedesigninitiative
at cornell university

the

 scene->render()

 Uses SpriteBatch to
draw

 Calls begin()/end() for you
 Sets the SpriteBatch

camera
 Limits in-between drawing

 Uses a preorder traversal

 Draws a parent node first
 Draws children in order
 Parent acts as backgroundScene Graphs28

Rendering a Scene is Easy

Node

Scene

Node

Node NodeNode Node

1

2 3 5 6

4

gamedesigninitiative
at cornell university

the

Good for UI Elements

Scene Graphs29

Is Preorder Traversal Always Good?

Bad For Animation

gamedesigninitiative
at cornell university

the

Good for UI Elements

Scene Graphs30

Is Preorder Traversal Always Good?

Bad For Animation

More on this later

gamedesigninitiative
at cornell university

the

 CUGL has many node types
 SpriteNode (animation)
 WireNode (wireframes)
 PolygonNode (tiled

shapes)
 PathNode (lines with

width)
 NinePatch (UI elements)
 Label (text)

 Learn them outside of class
 Read the documentation
 Play with the demos Scene Graphs31

Specialized Nodes

All one
graph node

gamedesigninitiative
at cornell university

the

JSON Language for Scene Graphs

"textfield" : {

 "type" : "Node",

 "format" : { "type"

: "Anchored" },

 "children" : {

 "action" : {

 "type"

: "TextField",

 "data"

: {

"font" : "felt",

"text" : "Edit me",

"size" : [600,80],

"anchor" : [0.5,0.5]

Scene Graphs32

Node
name

Node
type

Layout
manager

Child
nodes

gamedesigninitiative
at cornell university

the

JSON Language for Scene Graphs

"textfield" : {

 "type" : "Node",

 "format" : { "type"

: "Anchored" },

 "children" : {

 "action" : {

 "type"

: "TextField",

 "data"

: {

"font" : "felt",

"text" : "Edit me",

"size" : [600,80],

"anchor" : [0.5,0.5]

Scene Graphs33

Layout
manager

Node
data

Info for
parent layout

gamedesigninitiative
at cornell university

the

"textfield" : {

 "type" : "Node",

 "format" : { "type"

: "Anchored" },

 "children" : {

 "action" : {

 "type"

: "TextField",

 "data"

: {

"font" : "felt",

"text" : "Edit me",

"size" : [600,80],

"anchor" : [0.5,0.5]

Each node has
 Type
 Format
 Data
 Children
 Layout

Scene Graphs34

JSON Language for Scene Graphs

gamedesigninitiative
at cornell university

the

Advantages

 Designers do not need C++

 Using special tool in lab
 Tool good for entire semester

 Format is ideal for mobile

 Integrated layout managers
 Aspect ratio support is easy

 Integration is simple

 Load JSON with asset loader
 Refer to scene root by name

Scene Graphs35

Using JSON Scene Graphs

Disadvantages

 UI still needs custom code

 Buttons etc. do nothing
 Essentially need listeners
 Programmers do manually

 Files can be very confusing

 Format is a tree structure
 Each tree node is verbose

 Not a level editor format!

 Levels need more info

gamedesigninitiative
at cornell university

the

Solution: The Figma Plugin

Scene Graphs36

gamedesigninitiative
at cornell university

the

AnchorLayout

Scene Graphs37

Plugin Manages Anchors and Layouts

FloatLayout

gamedesigninitiative
at cornell university

the

AnchorLayout

Scene Graphs38

Plugin Manages Anchors and Layouts

FloatLayout

gamedesigninitiative
at cornell university

the

Widget

"variables" : {

 "image" :

["children","up","data","tex

ture"]

},

"contents" : {

 "type" : "Button",

 "data" : {

 "upnode" : "up",

"visible" : false,

 "anchor" :

[0.5,0.5], "scale" : 0.8

 },

 "children" : {

 "up" : {

Widgets: JSON Templates

JSON

"widgets": {

 "mybutton" :

"widgets/mybutton.json",

},

"scene2s": {

 "thescene" : {

 "type" : "Node",

 "format" : { "type" :

"Anchored" },

 "children" : {

 "button" : {

 "type" :

"Widget",

 "data" : {

 "key" :

"mybutton",

 "variables"

: { "image":"altplay" }

Widget is
a subtree

Replace
w/ subtree

gamedesigninitiative
at cornell university

the

Widget

"variables" : {

 "image" :

["children","up","data","tex

ture"]

},

"contents" : {

 "type" : "Button",

 "data" : {

 "upnode" : "up",

"visible" : false,

 "anchor" :

[0.5,0.5], "scale" : 0.8

 },

 "children" : {

 "up" : {

Widgets: JSON Templates

JSON

"widgets": {

 "mybutton" :

"widgets/mybutton.json",

},

"scene2s": {

 "thescene" : {

 "type" : "Node",

 "format" : { "type" :

"Anchored" },

 "children" : {

 "button" : {

 "type" :

"Widget",

 "data" : {

 "key" :

"mybutton",

 "variables"

: { "image":"altplay" }

Full path to
value to change

Change the
variable

Provide the
layout

gamedesigninitiative
at cornell university

the

One Last Problem: Physics

Architecture Revisited41

gamedesigninitiative
at cornell university

the

One Last Problem: Physics

Architecture Revisited42

How big is
that scene graph?

gamedesigninitiative
at cornell university

the

draw()

 Overridden to render node
 Only node, not children
 The render method (do

not touch) handles children

 Drawing data is cached

 The vertex positions
 The vertex colors
 The texture coordinates

 Cache passed to
SpriteBatch

Scene Graphs43

Defining Custom Nodes
generateRenderData

()

 Overridden to update cache
 Change vertex positions
 Change vertex colors
 Change texture coordinates

 Only needed for reshaping

 Transforms for movement
 Called infrequently

 Optimizes the render pass

gamedesigninitiative
at cornell university

the

The SceneNode draw() Method

void CustomNode::draw(const

std::shared_ptr<SpriteBatch>& batch,

 const

Affine2& transform, Color4 tint) {

 if (!_rendered) {

 generateRenderData();

 }

 batch->setColor(tint);

 batch->setTexture(_texture);

 batch->setBlendEquation(_blendEquation);

 batch->setBlendFunc(_srcFactor,

_dstFactor);

 batch->fill(_vertices, _vertsize, 0,

 _indices, _indxsize,

0,

 transform);

Scene Graphs44

gamedesigninitiative
at cornell university

the

The SceneNode draw() Method

void CustomNode::draw(const

std::shared_ptr<SpriteBatch>& batch,

 const

Affine2& transform, Color4 tint) {

 if (!_rendered) {

 generateRenderData();

 }

 batch->setColor(tint);

 batch->setTexture(_texture);

 batch->setBlendEquation(_blendEquation);

 batch->setBlendFunc(_srcFactor,

_dstFactor);

 batch->fill(_vertices, _vertsize, 0,

 _indices, _indxsize,

0,

 transform);

Scene Graphs45

Computed from
parent (+camera)

Computed from
parent (+scene)

The Render Data

gamedesigninitiative
at cornell university

the

Summary

 CUGL tries to leverage ideas from 3152
 Top level class works like the classic GDXRoot
 Design architecture to switch between modes
 Use SpriteBatch class to draw textures in 2D.

 New idea is using scene graphs to draw
 Tree of nodes with relative coordinate systems
 Makes touch input easier to process
 Also helps with animation (later)

 JSON language makes design easier
Scene Graphs46

	Slide 1: Scene Graphs
	Slide 2: Recall: Structure of a CUGL Application
	Slide 3: Recall: The Application Class
	Slide 4: Recall: The Application Class
	Slide 5: Drawing in CUGL
	Slide 6: The Scene Graph
	Slide 7: The Scene Graph
	Slide 8: Each Node is a Coordinate System
	Slide 9: Each Node is a Coordinate System
	Slide 10: Each Node is a Coordinate System
	Slide 11: Motivation: Touch Interfaces
	Slide 12: Settings Pass Down the Graph
	Slide 13: Settings Pass Down the Graph
	Slide 14: Settings Pass Down the Graph
	Slide 15: Anchors and Content
	Slide 16: Anchors and Content
	Slide 17: Anchors and Content
	Slide 18: Anchors and Content
	Slide 19: Anchor and Position
	Slide 20: Anchor and Position
	Slide 21: Layout Managers
	Slide 22: Layout Managers
	Slide 23: Layout Managers
	Slide 24: Layout Managers
	Slide 25: How to Use a Layout Manager
	Slide 26: Safe Area: Modern Phones
	Slide 27: Safe Area: Modern Phones
	Slide 28: Rendering a Scene is Easy
	Slide 29: Is Preorder Traversal Always Good?
	Slide 30: Is Preorder Traversal Always Good?
	Slide 31: Specialized Nodes
	Slide 32: JSON Language for Scene Graphs
	Slide 33: JSON Language for Scene Graphs
	Slide 34: JSON Language for Scene Graphs
	Slide 35: Using JSON Scene Graphs
	Slide 36: Solution: The Figma Plugin
	Slide 37: Plugin Manages Anchors and Layouts
	Slide 38: Plugin Manages Anchors and Layouts
	Slide 39: Widgets: JSON Templates
	Slide 40: Widgets: JSON Templates
	Slide 41: One Last Problem: Physics
	Slide 42: One Last Problem: Physics
	Slide 43: Defining Custom Nodes
	Slide 44: The SceneNode draw() Method
	Slide 45: The SceneNode draw() Method
	Slide 46: Summary

