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Recall: Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

Active Dormant
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onStartup()

 Handles the game assets
 Attaches the asset loaders
 Loads immediate assets

 Starts any global singletons
 Example: 

AudioChannels

 Creates any player modes
 But does not launch yet

 Waits for assets to load
 Like GDXRoot in 3152

Architecture Revisited3

Recall: The Application Class

update()

 Called each animation frame

 Manages gameplay
 Converts input to actions
 Processes NPC behavior
 Resolves physics
 Resolves other interactions

 Updates the scene graph
 Transforms nodes
 Enables/disables nodes
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Recall: The Application Class

update()
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 Use render() method
 Called after update()
 Clears screen first
 Uses clear color field

 Can use any OpenGL
 Included in CUBase.h
 Best to use OpenGLES

(subset of OpenGL)

 Or use a 
SpriteBatch

 Mostly like in 3152

void render() {

    

glEnableVertexAttribArray(0);    

    

glBindBuffer(GL_ARRAY_BUFFER, 

                         

vertexbuffer); 

    

glVertexAttribPointer(0, 3, GL_

FLOAT,   

                         

GL_FALSE, 0, (void*)0 );

    glDrawArrays(GL_TRIANGLES, 

0, 3); 

    

glDisableVertexAttribArray(0);

}
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Drawing in CUGL

void render() {

    _batch->begin();

    _batch-

>draw(image1,Vec2(10,10));

    _batch-

>draw(image2,Vec2(50,20));

    _batch->end();

} Attribute of Scene2
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The Scene Graph

Node

Scene

Node Node

Node Node Node Node Node Node

Or any
subclass

Node
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The Scene Graph

Node

Scene

Node Node

Node Node Node Node Node Node

Node

Game
Camera

Bounded
box inside

Coords relative 
to parent box
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Each Node is a Coordinate System

Node Node

Node
Node

Node

Node
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Each Node is a Coordinate System

Node

Node

NodeNode

Node
Node

Node

Scene

Node
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Node
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Each Node is a Coordinate System

Node Node

Node
Node

Node

Node

Origin

Origin
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 Touch handler requires
 Which object touched
 Location inside object 

 Scene graph is a search tree

 Check if touch is in parent
 … then check each child
 Faster than linear search

 But limit this to a search

 No input control in node
 Use polling over callbacks

Scene Graphs11

Motivation: Touch Interfaces

Scene

Node

Node

NodeNode

Node
Node
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Settings Pass Down the Graph

Transforms on parent
also transform children
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Settings Pass Down the Graph

Node

Node

Node Transparency on parent
also applies to children
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Settings Pass Down the Graph

Node

Node

Node Disabling the parent
also disables children
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 Nodes have content size

 Width/height of contents
 Measured in node space
 But only a guideline: 

content can be outside

 Nodes have an anchor

 Location in node space
 Percentage of width/height
 Does not affect the origin

 Both may affect position

Scene Graphs15

Anchors and Content

Node

Origin

Width

H
eig

h
t
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Anchors and Content

Node
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h
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Anchors and Content

Node
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Anchors and Content
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Anchor and Position

Parent

Node

Child

Child

Origin

Anchor:  (0,0)

Position: (150,50)
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Anchor and Position

Parent

Node

Origin

Anchor:  (0.5,0.5)

Position: (150,50)

Child

Child
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Layout Managers

 Not all devices have the same aspect ratio

 Sometimes, want placement to adjust to fit
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Screen

Screen

VS
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How to Use a Layout Manager

1. Create a layout manager

2. Assign a relative position to each child
 Example: middle left in an anchor layout
 Layout manager maps strings to layout
 Use the “name” string of the child node

3. Attach manager to the parent node

4. Call doLayout() on the parent

Scene Graphs25
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Safe Area: Modern Phones

Scene Graphs26

Safe Area

UI elements should avoid 
notch, rounded corners

But animations 
should fill screen
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Scene

Game
Node

UI
NodeArt that

must fill 
the screen

Elements 
to stay in
safe area

See Display class to find safe 
area
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 scene->render()

 Uses SpriteBatch to 
draw

 Calls begin()/end() for you
 Sets the SpriteBatch 

camera
 Limits in-between drawing

 Uses a preorder traversal

 Draws a parent node first
 Draws children in order
 Parent acts as backgroundScene Graphs28

Rendering a Scene is Easy

Node

Scene

Node

Node NodeNode Node

1

2 3 5 6

4
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Is Preorder Traversal Always Good?

Bad For Animation
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Is Preorder Traversal Always Good?

Bad For Animation

More on this later
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 CUGL has many node types
 SpriteNode (animation)
 WireNode (wireframes)
 PolygonNode (tiled 

shapes)
 PathNode (lines with 

width)
 NinePatch (UI elements)
 Label (text)

 Learn them outside of class
 Read the documentation
 Play with the demos Scene Graphs31

Specialized Nodes

All one
graph node
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JSON Language for Scene Graphs

"textfield" : {

        "type"        : "Node",            

        "format" : {  "type" 

: "Anchored" },              

        "children"  : {                

                "action"  : {                    

                        "type"   

: "TextField",  

                        "data"   

: {                        

                                

"font"       : "felt",

                                

"text"       : "Edit me", 

                                

"size"       : [600,80],                   

                                

"anchor"  : [0.5,0.5]                    

Scene Graphs32

Node
name

Node
type

Layout
manager

Child
nodes
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JSON Language for Scene Graphs

"textfield" : {

        "type"        : "Node",            

        "format" : {  "type" 

: "Anchored" },              

        "children"  : {                

                "action"  : {                    

                        "type"   

: "TextField",  

                        "data"   

: {                        

                                

"font"       : "felt",

                                

"text"       : "Edit me", 

                                

"size"       : [600,80],                   

                                

"anchor"  : [0.5,0.5]                    

Scene Graphs33

Layout
manager

Node 
data

Info for 
parent layout 
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"textfield" : {

        "type"        : "Node",            

        "format" : {  "type" 

: "Anchored" },              

        "children"  : {                

                "action"  : {                    

                        "type"   

: "TextField",  

                        "data"   

: {                        

                                

"font"       : "felt",

                                

"text"       : "Edit me", 

                                

"size"       : [600,80],                   

                                

"anchor"  : [0.5,0.5]                    

Each node has
 Type
 Format
 Data
 Children
 Layout

Scene Graphs34

JSON Language for Scene Graphs
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Advantages

 Designers do not need C++

 Using special tool in lab
 Tool good for entire semester

 Format is ideal for mobile

 Integrated layout managers
 Aspect ratio support is easy

 Integration is simple

 Load JSON with asset loader
 Refer to scene root by name

Scene Graphs35

Using JSON Scene Graphs

Disadvantages

 UI still needs custom code

 Buttons etc. do nothing
 Essentially need listeners
 Programmers do manually

 Files can be very confusing

 Format is a tree structure
 Each tree node is verbose

 Not a level editor format!

 Levels need more info
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Solution: The Figma Plugin

Scene Graphs36
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Plugin Manages Anchors and Layouts

FloatLayout
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Plugin Manages Anchors and Layouts

FloatLayout
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Widget

"variables" : {

    "image" : 

["children","up","data","tex

ture"]

},

"contents" : {

    "type"   : "Button",

    "data"   : {

        "upnode"   : "up", 

"visible"  : false,

        "anchor"   : 

[0.5,0.5], "scale"    : 0.8

    },

    "children" : {

        "up"       : {

Widgets: JSON Templates

JSON

"widgets": {

    "mybutton" : 

"widgets/mybutton.json",

},

"scene2s": {

    "thescene" : {

    "type"     : "Node",

    "format" : { "type" : 

"Anchored" },

    "children"  : {

        "button"  : {

            "type"   : 

"Widget",

            "data"   : {

                "key" : 

"mybutton",

                "variables" 

: { "image":"altplay" }

Widget is
a subtree

Replace
w/ subtree
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Widget

"variables" : {

    "image" : 

["children","up","data","tex

ture"]

},

"contents" : {

    "type"   : "Button",

    "data"   : {

        "upnode"   : "up", 

"visible"  : false,

        "anchor"   : 

[0.5,0.5], "scale"    : 0.8

    },

    "children" : {

        "up"       : {

Widgets: JSON Templates

JSON

"widgets": {

    "mybutton" : 

"widgets/mybutton.json",

},

"scene2s": {

    "thescene" : {

    "type"     : "Node",

    "format" : { "type" : 

"Anchored" },

    "children"  : {

        "button"  : {

            "type"   : 

"Widget",

            "data"   : {

                "key" : 

"mybutton",

                "variables" 

: { "image":"altplay" }

Full path to 
value to change

Change the
variable

Provide the
layout
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One Last Problem: Physics
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One Last Problem: Physics
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How big is
that scene graph?
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draw()

 Overridden to render node
 Only node, not children
 The render method (do 

not touch) handles children

 Drawing data is cached

 The vertex positions
 The vertex colors
 The texture coordinates

 Cache passed to 
SpriteBatch

Scene Graphs43

Defining Custom Nodes
generateRenderData

()

 Overridden to update cache
 Change vertex positions
 Change vertex colors
 Change texture coordinates

 Only needed for reshaping

 Transforms for movement
 Called infrequently

 Optimizes the render pass
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The SceneNode draw() Method

void CustomNode::draw(const 

std::shared_ptr<SpriteBatch>& batch,   

                                     const 

Affine2& transform, Color4 tint) {

    if (!_rendered) {

        generateRenderData();

    } 

    batch->setColor(tint);

    batch->setTexture(_texture);

    batch->setBlendEquation(_blendEquation);

    batch->setBlendFunc(_srcFactor, 

_dstFactor);

    batch->fill(_vertices, _vertsize, 0,

             _indices,  _indxsize, 

0,

             transform);

Scene Graphs44
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The SceneNode draw() Method

void CustomNode::draw(const 

std::shared_ptr<SpriteBatch>& batch,   

                                     const 

Affine2& transform, Color4 tint) {

    if (!_rendered) {

        generateRenderData();

    } 

    batch->setColor(tint);

    batch->setTexture(_texture);

    batch->setBlendEquation(_blendEquation);

    batch->setBlendFunc(_srcFactor, 

_dstFactor);

    batch->fill(_vertices, _vertsize, 0,

             _indices,  _indxsize, 

0,

             transform);

Scene Graphs45

Computed from 
parent (+camera)

Computed from 
parent (+scene)

The Render Data
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Summary

 CUGL tries to leverage ideas from 3152
 Top level class works like the classic GDXRoot
 Design architecture to switch between modes
 Use SpriteBatch class to draw textures in 2D.

 New idea is using scene graphs to draw
 Tree of nodes with relative coordinate systems
 Makes touch input easier to process
 Also helps with animation (later)

 JSON language makes design easier
Scene Graphs46
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