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Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop2 

Recall: The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions60 times/s

=
16.7 ms
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Game Loop3 

Recall: The Game Loop

Update

Draw

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

 Almost everything is in loop
 Except asynchronous actions
 Is enough for simple games

 How do we organize this loop?
 Do not want spaghetti code
 Distribute over programmers
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Model
• Defines/manages 
 the program data
• Responds to the 

controller requests

View
• Displays model 
 to the user/player
• Provides interface 

for the controller

Controller
• Updates model in 

response to events
• Updates view with 

model changes 

Architecture Revisited4

Model-View-Controller Pattern

Calls the 

methods of
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Update

Draw

The Game Loop and MVC

 Model: The game state
 Value of game resources
 Location of game objects

 View: The draw phase
 Rendering commands only
 Major computation in update

 Controller: The update phase
 Alters the game state
 Vast majority of your code

Architecture Revisited5
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Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels
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Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

App 
Configuration

Initialization 
& Shut Down
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Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

Active Dormant
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Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

View

Controller(s)
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onStartup()

 Handles the game assets
 Attaches the asset loaders
 Loads immediate assets

 Starts any global singletons
 Example: AudioEngine

 Creates any player modes
 But does not launch yet

 Waits for assets to load
 Like GDXRoot in 3152

Architecture Revisited10

The Application Class

update()

 Called each animation frame

 Manages gameplay
 Converts input to actions
 Processes NPC behavior
 Resolves physics
 Resolves other interactions

 Updates the scene graph
 Transforms nodes
 Enables/disables nodes
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onStartup()

 Handles the game assets
 Attaches the asset loaders
 Loads immediate assets

 Starts any global singletons
 Example: 

AudioChannels

 Creates any player modes
 But does not launch yet

 Waits for assets to load
 Like GDXRoot in 3152
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The Application Class

update()

 Called each animation frame

 Manages gameplay
 Converts input to actions
 Processes NPC behavior
 Resolves physics
 Resolves other interactions

 Updates the scene graph
 Transforms nodes
 Enables/disables nodes
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 16.7 ms not guaranteed!
 Even for optimized code
 Result of external factors

 Regularly see minor jitter
 “In-between” code
 Potential Vsync delay

 Occasional major jitter
 Dynamic library loading
 Cost of debugging tools

Game Loop12 

Problems With the Game Loop

Update

Draw

60 times/s
=

16.7 ms
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Problems With the Game Loop

Update

Draw

60 times/s
=

16.7 ms
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Physics and Non-Determinism

??
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How To Guarantee Determinism?

 Need to decouple simulation from other code
 Cannot be delayed by drawing
 Cannot be affected by OS externalities

 Put this on a separate thread?
 Thread management still has some overhead
 Have to synchronize with input/drawing thread (bad!)

 Create a separate logical loop?
 Simulation loop runs at its own fixed rate
 Draw method simply draws what it has so far

Architecture Revisited15
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The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)
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The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)
dt

secs called only when step 
seconds have passed
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These Are All Possible

preUpdate

Draw

fixedUpdate

postUpdate

preUpdate

postUpdate

fixedUpdate

fixedUpdate

Draw

preUpdate

Draw

postUpdate
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Problem: Jerky Motion

Each Image is a result of fixedUpdate

Draw Draw

Draw

Draw Draw

Draw

Draw Draw
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The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)

Interpolate drawing position

left
over
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CUGL Supports Both Loops

Update

Draw

preUpdate

Draw

fixedUpdate

postUpdate

setDeterministic(false) setDeterministic(true)
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Scene Structure

Architecture Revisited22

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Ownership

Collaboration
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Scene Structure
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Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Collaboration

 Collaboration
 Must import class/interface
 Instantiates an object OR
 Calls the objects methods

 Ownership
 Instantiated the object
 Responsible for disposal
 Superset of collaboration

Ownership
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Avoid Cyclic Collaboration

Y X

collaborates with
Y X

Z

collaborates
with

Controller

collaborates with
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Scene Structure

Architecture Revisited25

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

?
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CUGL Views: Scene Graphs

Architecture Revisited26

Root Node

Scene

Node Node

Node Node Node Node

Model

Model
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CUGL Views: Scene Graphs

Architecture Revisited27

Root Node

Scene

Node Node

Node Node Node Node

Model

Model
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CUGL Views: Scene Graphs

Architecture Revisited28

Root Node

Scene

Node Node

Node Node Node Node

Model

Model
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Model

 Store/retrieve object data
 Limit access (getter/setter)
 Preserve any invariants
 Only affects this object

 Implements object logic
 Complex actions on model
 May affect multiple models
 Example: attack, collide

Architecture Revisited29

Model-Controller Separation (Standard)

Controller

 Process user input
 Determine action for input
 Example: mouse, gamepad
 Call action in the model

Traditional controllers 
are “lightweight”
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Classic Software Problem: Extensibility

 Given: Class with some base functionality
 Might be provided in the language API
 Might be provided in 3rd party software

 Goal: Object with additional functionality
 Classic solution is to subclass original class first
 Example: Extending GUI widgets (e.g. Swing)

 But subclassing does not always work…
 How do you extend a Singleton object?

Architecture Revisited30
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 Games have lots of classes
 Each game entity is different
 Needs its own functionality 

(e.g. object methods)

 Want to avoid redundancies
 Makes code hard to change
 Common source of bugs

 Might be tempted to subclass
 Common behavior in parents
 Specific behavior in children

Architecture Revisited31

Problem with Subclassing

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior
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 Games have lots of classes
 Each game entity is different
 Needs its own functionality 

(e.g. object methods)

 Want to avoid redundancies
 Makes code hard to change
 Common source of bugs

 Might be tempted to subclass
 Common behavior in parents
 Specific behavior in children
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Problem with Subclassing

Human
Warrior

Orc
Warrior

Human
Archer

Orc
Archer

ArcherWarrior

NPC

Redundant Behavior
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Model

 Store/retrieve object data
 Limit access (getter/setter)
 Preserve any invariants
 Only affects this object

 Implements object logic
 Complex actions on model
 May affect multiple models
 Example: attack, collide
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Model-Controller Separation (Standard)

Redundant Behavior

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC
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Model

 Store/retrieve object data
 Limit access (getter/setter)
 Preserve any invariants
 Only affects this object

Architecture Revisited34

Model-Controller Separation (Alternate)

Controller

 Process game actions
 Determine from input or AI
 Find all objects effected
 Apply action to objects

 Process interactions
 Look at current game state
 Look for “triggering” event
 Apply interaction outcome

In this case, models 
are lightweight
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Model

 Store/retrieve object data
 Limit access (getter/setter)
 Preserve any invariants
 Only affects this object
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Model-Controller Separation (Alternate)

Controller

 Process game actions
 Determine from input or AI
 Find all objects effected
 Apply action to objects

 Process interactions
 Look at current game state
 Look for “triggering” event
 Apply interaction outcome

In this case, models 
are lightweight

Motivation for the
Entity-Component Model
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 Code correctness a concern
 Methods have specifications
 Must use according to spec

 Check correctness via typing
 Find methods in object class
 Example: orc.flee()
 Check type of parameters
 Example: 

force_to_flee(orc)

 Logical association with type
 Even if not part of class

Architecture Revisited36

Does Not Completely Solve Problem

Can I 
flee?



gamedesigninitiative
at cornell university

the

Issues with the OO Paradigm

 Object-oriented programming is very noun-centric
 All code must be organized into classes
 Polymorphism determines capability via type

 OO became popular with traditional MVC pattern
 Widget libraries are nouns implementing view 
 Data structures (e.g. CS 2110) are all nouns
 Controllers are not necessarily nouns, but lightweight

 Games, interactive media break this paradigm
 View is animation (process) oriented, not widget oriented
 Actions/capabilities only loosely connected to entities

Architecture Revisited37
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Classes/Types are Nouns

 Methods have verb names

 Method calls are sentences
 subject.verb(objec

t)

 subject.verb()

 Classes related by is-a

 Indicates class a subclass of
 Example: String is-a 

Object

 Objects are class instances
Architecture Revisited38

Programming and Parts of Speech

Actions are Verbs

 Capability of a game object

 Often just a simple function
 damage(object)

 collide(object1,ob

ject1)

 Relates to objects via can-it

 Example: Orc can-it 

attack
 Not necessarily tied to class
 Example: swapping items
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 “Type” determined by its
 Names of its methods 
 Names of its properties
 If it “quacks like a duck”

 Python has this capability
 hasattr(<object>,<

string>)

 True if object has attribute 
or method of that name

 This has many problems
 Correctness is a nightmare

Java:
    public boolean 
equals(Object h) {

        if (!(h instanceof 
Person)) {

            return false;}

        Person ob= (Person)h;

        return 
name.equals(ob.name);

    }

Python:
    def __eq__(self,ob):

        if (not 
(hasattr(ob,'name’))

            return False

        return (self.name == 
ob.name)Architecture Revisited39

Duck Typing: Reaction to This Issue
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Java:
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Duck Typing: Reaction to This Issue

Similar to C++ templates
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 Python has this capability
 hasattr(<object>,<

string>)

 True if object has attribute 
or method of that name

 This has many problems
 Correctness is a nightmare

Java:
    public boolean 
equals(Object h) {

        if (!(h instanceof 
Person)) {

            return false;}

        Person ob= (Person)h;

        return 
name.equals(ob.name);

    }

Python:
    def __eq__(self,ob):

        if (not 
(hasattr(ob,'name’))

            return False

        return (self.name == 
ob.name)Architecture Revisited41

Duck Typing: Reaction to This Issue

 What do we really want?
 Capabilities over properties
 Extend capabilities without 

necessarily changing type
 Without using new languages

 Again, use software patterns
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Reference to
base object

New
Functionality

Architecture Revisited42

Possible Solution: Decorator Pattern

Original
Object

Decorator
Object

Request Original
Functionality
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Java I/O Example

InputStream input = System.in;

Reader reader = new 

InputStreamReader(input);

BufferedReader buffer = new 

BufferedReader(reader);

Architecture Revisited43

Built-in console input

Make characters easy to read

Read whole line at a timeMost of 
java.io 

works this way



gamedesigninitiative
at cornell university

the

Reference to
delegate

Architecture Revisited44

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern
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Reference to
delegate

Architecture Revisited45

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern

Delegate
Object 2
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Example: Sort Algorithms

public class SortableArray extends 
ArrayList{

   private Sorter sorter = new 

MergeSorter();

   public void setSorter(Sorter s) { sorter 

= s; }

   public void sort() {

        Object[] list = toArray();

        sorter.sort(list);

        clear(); 

        for (o:list) { add(o); }

    }

}

Architecture Revisited46

public interface Sorter {

      public void sort(Object[] list);

  }

new QuickSorter();
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Decoration

 Pattern applies to decorator

 Given the original object
 Requests through decorator

 Monolithic solution
 Decorator has all methods
 “Layer” for more methods

(e.g. Java I/O classes)

 Works on any object/class

Architecture Revisited47

Comparison of Approaches

Delegation

 Applies to original object

 You designed object class
 All requests through object

 Modular solution
 Each method can have own 

delegate implementation
 Like higher-order functions

 Limited to classes you make
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The Subclass Problem Revisited

Warrior

Archer

Orc

Human
Slot

Slot

Slot

NPC

Delegates?

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior
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Summary

 Games naturally fit a specialized MVC pattern
 Want lightweight models (mainly for serialization)
 Want heavyweight controllers for the game loop
 View is specialized rendering with few widgets

 CUGL view is handled in scene graphs

 Proper design leads to unusual OO patterns
 Subclass hierarchies are unmanageable
 Component-based design better models actions

Architecture Revisited49
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