
gamedesigninitiative
at cornell university

the

Game Architecture

Revisited

Lecture 5

gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Game Loop2

Recall: The Game Loop

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions60 times/s

=
16.7 ms

gamedesigninitiative
at cornell university

the

Game Loop3

Recall: The Game Loop

Update

Draw

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions

 Almost everything is in loop
 Except asynchronous actions
 Is enough for simple games

 How do we organize this loop?
 Do not want spaghetti code
 Distribute over programmers

gamedesigninitiative
at cornell university

the

Model
• Defines/manages
 the program data
• Responds to the

controller requests

View
• Displays model
 to the user/player
• Provides interface

for the controller

Controller
• Updates model in

response to events
• Updates view with

model changes

Architecture Revisited4

Model-View-Controller Pattern

Calls the

methods of

gamedesigninitiative
at cornell university

the

Update

Draw

The Game Loop and MVC

 Model: The game state
 Value of game resources
 Location of game objects

 View: The draw phase
 Rendering commands only
 Major computation in update

 Controller: The update phase
 Alters the game state
 Vast majority of your code

Architecture Revisited5

gamedesigninitiative
at cornell university

the

Architecture Revisited6

Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

gamedesigninitiative
at cornell university

the

Architecture Revisited7

Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

App
Configuration

Initialization
& Shut Down

gamedesigninitiative
at cornell university

the

Architecture Revisited8

Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

Active Dormant

gamedesigninitiative
at cornell university

the

Architecture Revisited9

Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

View

Controller(s)

gamedesigninitiative
at cornell university

the

onStartup()

 Handles the game assets
 Attaches the asset loaders
 Loads immediate assets

 Starts any global singletons
 Example: AudioEngine

 Creates any player modes
 But does not launch yet

 Waits for assets to load
 Like GDXRoot in 3152

Architecture Revisited10

The Application Class

update()

 Called each animation frame

 Manages gameplay
 Converts input to actions
 Processes NPC behavior
 Resolves physics
 Resolves other interactions

 Updates the scene graph
 Transforms nodes
 Enables/disables nodes

gamedesigninitiative
at cornell university

the

onStartup()

 Handles the game assets
 Attaches the asset loaders
 Loads immediate assets

 Starts any global singletons
 Example:

AudioChannels

 Creates any player modes
 But does not launch yet

 Waits for assets to load
 Like GDXRoot in 3152

Architecture Revisited11

The Application Class

update()

 Called each animation frame

 Manages gameplay
 Converts input to actions
 Processes NPC behavior
 Resolves physics
 Resolves other interactions

 Updates the scene graph
 Transforms nodes
 Enables/disables nodes

gamedesigninitiative
at cornell university

the

 16.7 ms not guaranteed!
 Even for optimized code
 Result of external factors

 Regularly see minor jitter
 “In-between” code
 Potential Vsync delay

 Occasional major jitter
 Dynamic library loading
 Cost of debugging tools

Game Loop12

Problems With the Game Loop

Update

Draw

60 times/s
=

16.7 ms

gamedesigninitiative
at cornell university

the

 16.7 ms not guaranteed!
 Even for optimized code
 Result of external factors

 Regularly see minor jitter
 “In-between” code
 Potential Vsync delay

 Occasional major jitter
 Dynamic library loading
 Cost of debugging tools

Game Loop13

Problems With the Game Loop

Update

Draw

60 times/s
=

16.7 ms

gamedesigninitiative
at cornell university

the

Architecture Revisited14

Physics and Non-Determinism

??

gamedesigninitiative
at cornell university

the

How To Guarantee Determinism?

 Need to decouple simulation from other code
 Cannot be delayed by drawing
 Cannot be affected by OS externalities

 Put this on a separate thread?
 Thread management still has some overhead
 Have to synchronize with input/drawing thread (bad!)

 Create a separate logical loop?
 Simulation loop runs at its own fixed rate
 Draw method simply draws what it has so far

Architecture Revisited15

gamedesigninitiative
at cornell university

the

Game Loop16

The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)

gamedesigninitiative
at cornell university

the

Game Loop17

The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)
dt

secs called only when step
seconds have passed

gamedesigninitiative
at cornell university

the

Game Loop18

These Are All Possible

preUpdate

Draw

fixedUpdate

postUpdate

preUpdate

postUpdate

fixedUpdate

fixedUpdate

Draw

preUpdate

Draw

postUpdate

gamedesigninitiative
at cornell university

the

Architecture Revisited19

Problem: Jerky Motion

Each Image is a result of fixedUpdate

Draw Draw

Draw

Draw Draw

Draw

Draw Draw

gamedesigninitiative
at cornell university

the

Game Loop20

The Game Loop Revisited

preUpdate

Draw

Receive player input
Process player actions
Process NPC actions

fixedUpdate

postUpdate

Interactions (e.g. physics)

Interpolate drawing position

left
over

gamedesigninitiative
at cornell university

the

Architecture Revisited21

CUGL Supports Both Loops

Update

Draw

preUpdate

Draw

fixedUpdate

postUpdate

setDeterministic(false) setDeterministic(true)

gamedesigninitiative
at cornell university

the

Scene Structure

Architecture Revisited22

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Ownership

Collaboration

gamedesigninitiative
at cornell university

the

Scene Structure

Architecture Revisited23

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

Collaboration

 Collaboration
 Must import class/interface
 Instantiates an object OR
 Calls the objects methods

 Ownership
 Instantiated the object
 Responsible for disposal
 Superset of collaboration

Ownership

gamedesigninitiative
at cornell university

the

Architecture Revisited24

Avoid Cyclic Collaboration

Y X

collaborates with
Y X

Z

collaborates
with

Controller

collaborates with

gamedesigninitiative
at cornell university

the

Scene Structure

Architecture Revisited25

Model Model Model

SubcontrollerSubcontroller

Scene
Controller

View

?

gamedesigninitiative
at cornell university

the

CUGL Views: Scene Graphs

Architecture Revisited26

Root Node

Scene

Node Node

Node Node Node Node

Model

Model

gamedesigninitiative
at cornell university

the

CUGL Views: Scene Graphs

Architecture Revisited27

Root Node

Scene

Node Node

Node Node Node Node

Model

Model

gamedesigninitiative
at cornell university

the

CUGL Views: Scene Graphs

Architecture Revisited28

Root Node

Scene

Node Node

Node Node Node Node

Model

Model

gamedesigninitiative
at cornell university

the

Model

 Store/retrieve object data
 Limit access (getter/setter)
 Preserve any invariants
 Only affects this object

 Implements object logic
 Complex actions on model
 May affect multiple models
 Example: attack, collide

Architecture Revisited29

Model-Controller Separation (Standard)

Controller

 Process user input
 Determine action for input
 Example: mouse, gamepad
 Call action in the model

Traditional controllers
are “lightweight”

gamedesigninitiative
at cornell university

the

Classic Software Problem: Extensibility

 Given: Class with some base functionality
 Might be provided in the language API
 Might be provided in 3rd party software

 Goal: Object with additional functionality
 Classic solution is to subclass original class first
 Example: Extending GUI widgets (e.g. Swing)

 But subclassing does not always work…
 How do you extend a Singleton object?

Architecture Revisited30

gamedesigninitiative
at cornell university

the

 Games have lots of classes
 Each game entity is different
 Needs its own functionality

(e.g. object methods)

 Want to avoid redundancies
 Makes code hard to change
 Common source of bugs

 Might be tempted to subclass
 Common behavior in parents
 Specific behavior in children

Architecture Revisited31

Problem with Subclassing

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior

gamedesigninitiative
at cornell university

the

 Games have lots of classes
 Each game entity is different
 Needs its own functionality

(e.g. object methods)

 Want to avoid redundancies
 Makes code hard to change
 Common source of bugs

 Might be tempted to subclass
 Common behavior in parents
 Specific behavior in children

Architecture Revisited32

Problem with Subclassing

Human
Warrior

Orc
Warrior

Human
Archer

Orc
Archer

ArcherWarrior

NPC

Redundant Behavior

gamedesigninitiative
at cornell university

the

Model

 Store/retrieve object data
 Limit access (getter/setter)
 Preserve any invariants
 Only affects this object

 Implements object logic
 Complex actions on model
 May affect multiple models
 Example: attack, collide

Architecture Revisited33

Model-Controller Separation (Standard)

Redundant Behavior

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

gamedesigninitiative
at cornell university

the

Model

 Store/retrieve object data
 Limit access (getter/setter)
 Preserve any invariants
 Only affects this object

Architecture Revisited34

Model-Controller Separation (Alternate)

Controller

 Process game actions
 Determine from input or AI
 Find all objects effected
 Apply action to objects

 Process interactions
 Look at current game state
 Look for “triggering” event
 Apply interaction outcome

In this case, models
are lightweight

gamedesigninitiative
at cornell university

the

Model

 Store/retrieve object data
 Limit access (getter/setter)
 Preserve any invariants
 Only affects this object

Architecture Revisited35

Model-Controller Separation (Alternate)

Controller

 Process game actions
 Determine from input or AI
 Find all objects effected
 Apply action to objects

 Process interactions
 Look at current game state
 Look for “triggering” event
 Apply interaction outcome

In this case, models
are lightweight

Motivation for the
Entity-Component Model

gamedesigninitiative
at cornell university

the

 Code correctness a concern
 Methods have specifications
 Must use according to spec

 Check correctness via typing
 Find methods in object class
 Example: orc.flee()
 Check type of parameters
 Example:

force_to_flee(orc)

 Logical association with type
 Even if not part of class

Architecture Revisited36

Does Not Completely Solve Problem

Can I
flee?

gamedesigninitiative
at cornell university

the

Issues with the OO Paradigm

 Object-oriented programming is very noun-centric
 All code must be organized into classes
 Polymorphism determines capability via type

 OO became popular with traditional MVC pattern
 Widget libraries are nouns implementing view
 Data structures (e.g. CS 2110) are all nouns
 Controllers are not necessarily nouns, but lightweight

 Games, interactive media break this paradigm
 View is animation (process) oriented, not widget oriented
 Actions/capabilities only loosely connected to entities

Architecture Revisited37

gamedesigninitiative
at cornell university

the

Classes/Types are Nouns

 Methods have verb names

 Method calls are sentences
 subject.verb(objec

t)

 subject.verb()

 Classes related by is-a

 Indicates class a subclass of
 Example: String is-a

Object

 Objects are class instances
Architecture Revisited38

Programming and Parts of Speech

Actions are Verbs

 Capability of a game object

 Often just a simple function
 damage(object)

 collide(object1,ob

ject1)

 Relates to objects via can-it

 Example: Orc can-it

attack
 Not necessarily tied to class
 Example: swapping items

gamedesigninitiative
at cornell university

the

 “Type” determined by its
 Names of its methods
 Names of its properties
 If it “quacks like a duck”

 Python has this capability
 hasattr(<object>,<

string>)

 True if object has attribute
or method of that name

 This has many problems
 Correctness is a nightmare

Java:
 public boolean
equals(Object h) {

 if (!(h instanceof
Person)) {

 return false;}

 Person ob= (Person)h;

 return
name.equals(ob.name);

 }

Python:
 def __eq__(self,ob):

 if (not
(hasattr(ob,'name’))

 return False

 return (self.name ==
ob.name)Architecture Revisited39

Duck Typing: Reaction to This Issue

gamedesigninitiative
at cornell university

the

 “Type” determined by its
 Names of its methods
 Names of its properties
 If it “quacks like a duck”

 Python has this capability
 hasattr(<object>,<

string>)

 True if object has attribute
or method of that name

 This has many problems
 Correctness is a nightmare

Java:
 public boolean
equals(Object h) {

 if (!(h instanceof
Person)) {

 return false;}

 Person ob= (Person)h;

 return
name.equals(ob.name);

 }

Python:
 def __eq__(self,ob):

 if (not
(hasattr(ob,'name’))

 return False

 return (self.name ==
ob.name)Architecture Revisited40

Duck Typing: Reaction to This Issue

Similar to C++ templates

gamedesigninitiative
at cornell university

the

 “Type” determined by its
 Names of its methods
 Names of its properties
 If it “quacks like a duck”

 Python has this capability
 hasattr(<object>,<

string>)

 True if object has attribute
or method of that name

 This has many problems
 Correctness is a nightmare

Java:
 public boolean
equals(Object h) {

 if (!(h instanceof
Person)) {

 return false;}

 Person ob= (Person)h;

 return
name.equals(ob.name);

 }

Python:
 def __eq__(self,ob):

 if (not
(hasattr(ob,'name’))

 return False

 return (self.name ==
ob.name)Architecture Revisited41

Duck Typing: Reaction to This Issue

 What do we really want?
 Capabilities over properties
 Extend capabilities without

necessarily changing type
 Without using new languages

 Again, use software patterns

gamedesigninitiative
at cornell university

the

Reference to
base object

New
Functionality

Architecture Revisited42

Possible Solution: Decorator Pattern

Original
Object

Decorator
Object

Request Original
Functionality

gamedesigninitiative
at cornell university

the

Java I/O Example

InputStream input = System.in;

Reader reader = new

InputStreamReader(input);

BufferedReader buffer = new

BufferedReader(reader);

Architecture Revisited43

Built-in console input

Make characters easy to read

Read whole line at a timeMost of
java.io

works this way

gamedesigninitiative
at cornell university

the

Reference to
delegate

Architecture Revisited44

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern

gamedesigninitiative
at cornell university

the

Reference to
delegate

Architecture Revisited45

Alternate Solution: Delegation Pattern

Original
Object

Delegate
Object 1

Request

Forward
Request

Inversion of the Decorator Pattern

Delegate
Object 2

gamedesigninitiative
at cornell university

the

Example: Sort Algorithms

public class SortableArray extends
ArrayList{

 private Sorter sorter = new

MergeSorter();

 public void setSorter(Sorter s) { sorter

= s; }

 public void sort() {

 Object[] list = toArray();

 sorter.sort(list);

 clear();

 for (o:list) { add(o); }

 }

}

Architecture Revisited46

public interface Sorter {

 public void sort(Object[] list);

 }

new QuickSorter();

gamedesigninitiative
at cornell university

the

Decoration

 Pattern applies to decorator

 Given the original object
 Requests through decorator

 Monolithic solution
 Decorator has all methods
 “Layer” for more methods

(e.g. Java I/O classes)

 Works on any object/class

Architecture Revisited47

Comparison of Approaches

Delegation

 Applies to original object

 You designed object class
 All requests through object

 Modular solution
 Each method can have own

delegate implementation
 Like higher-order functions

 Limited to classes you make

gamedesigninitiative
at cornell university

the

Architecture Revisited48

The Subclass Problem Revisited

Warrior

Archer

Orc

Human
Slot

Slot

Slot

NPC

Delegates?

Human
Warrior

Human
Archer

Orc
Warrior

Orc
Archer

OrcHuman

NPC

Redundant Behavior

gamedesigninitiative
at cornell university

the

Summary

 Games naturally fit a specialized MVC pattern
 Want lightweight models (mainly for serialization)
 Want heavyweight controllers for the game loop
 View is specialized rendering with few widgets

 CUGL view is handled in scene graphs

 Proper design leads to unusual OO patterns
 Subclass hierarchies are unmanageable
 Component-based design better models actions

Architecture Revisited49

	Slide 1: Game Architecture Revisited
	Slide 2: Recall: The Game Loop
	Slide 3: Recall: The Game Loop
	Slide 4: Model-View-Controller Pattern
	Slide 5: The Game Loop and MVC
	Slide 6: Structure of a CUGL Application
	Slide 7: Structure of a CUGL Application
	Slide 8: Structure of a CUGL Application
	Slide 9: Structure of a CUGL Application
	Slide 10: The Application Class
	Slide 11: The Application Class
	Slide 12: Problems With the Game Loop
	Slide 13: Problems With the Game Loop
	Slide 14: Physics and Non-Determinism
	Slide 15: How To Guarantee Determinism?
	Slide 16: The Game Loop Revisited
	Slide 17: The Game Loop Revisited
	Slide 18: These Are All Possible
	Slide 19: Problem: Jerky Motion
	Slide 20: The Game Loop Revisited
	Slide 21: CUGL Supports Both Loops
	Slide 22: Scene Structure
	Slide 23: Scene Structure
	Slide 24: Avoid Cyclic Collaboration
	Slide 25: Scene Structure
	Slide 26: CUGL Views: Scene Graphs
	Slide 27: CUGL Views: Scene Graphs
	Slide 28: CUGL Views: Scene Graphs
	Slide 29: Model-Controller Separation (Standard)
	Slide 30: Classic Software Problem: Extensibility
	Slide 31: Problem with Subclassing
	Slide 32: Problem with Subclassing
	Slide 33: Model-Controller Separation (Standard)
	Slide 34: Model-Controller Separation (Alternate)
	Slide 35: Model-Controller Separation (Alternate)
	Slide 36: Does Not Completely Solve Problem
	Slide 37: Issues with the OO Paradigm
	Slide 38: Programming and Parts of Speech
	Slide 39: Duck Typing: Reaction to This Issue
	Slide 40: Duck Typing: Reaction to This Issue
	Slide 41: Duck Typing: Reaction to This Issue
	Slide 42: Possible Solution: Decorator Pattern
	Slide 43: Java I/O Example
	Slide 44: Alternate Solution: Delegation Pattern
	Slide 45: Alternate Solution: Delegation Pattern
	Slide 46: Example: Sort Algorithms
	Slide 47: Comparison of Approaches
	Slide 48: The Subclass Problem Revisited
	Slide 49: Summary

