
gamedesigninitiative
at cornell university

the

The Graphics Pipeline

(Overview)

Lecture 12

gamedesigninitiative
at cornell university

the

Caveat About Today’s Lecture

 Today’s focus is on OpenGL

 The cross-platform graphics API for Indie games

 Vulkan will eventually take over, but not there yet

 CUGL uses OpenGLES 3 for rendering

 Is a proper subset of OpenGL 3.x

 Designed with mobile devices in mind

 Much of what we say is true in other APIs

 But the pipeline will be slightly different

 In the case of Vulkan, a lot different

The Graphics Pipeline2

gamedesigninitiative
at cornell university

the

Graphics Cards Draw Triangles

The Graphics Pipeline3

gamedesigninitiative
at cornell university

the

Triangles Can Be Colored

The Graphics Pipeline4

gamedesigninitiative
at cornell university

the

Triangles Can Be Textured

The Graphics Pipeline5

gamedesigninitiative
at cornell university

the

Triangles Can Be Both

The Graphics Pipeline6

gamedesigninitiative
at cornell university

the

A Sprite is (Often) Two Triangles

The Graphics Pipeline7

gamedesigninitiative
at cornell university

the

Triangles are Drawn with Shaders

The Graphics Pipeline8

Vertex

Shader

Fragment

Shader

Vertex

Data

Pixel

Data
Image

Uniforms

gamedesigninitiative
at cornell university

the

Vertex Data Defines the Triangle

The Graphics Pipeline9

(0,0) (0,50)

(25,43)Position (Required)

gamedesigninitiative
at cornell university

the

Vertex Data Defines the Triangle

The Graphics Pipeline10

(0,0)

(0,0,1,1)

(0,50)

(0,1,0,1)

(25,43)

(1,0,0,1)
Position (Required)

Color (Optional)

gamedesigninitiative
at cornell university

the

Vertex Shader Interpolates Pixels

The Graphics Pipeline11

(0,0)

(0,0,1,1)

(0,50)

(0,1,0,1)

(25,43)

(1,0,0,1)
Position (Required)

Color (Optional)

(12,21)

(0.49,0,0.48,1)

(25,14)

(0.33,0.33,0.33,1)

gamedesigninitiative
at cornell university

the

What Does The Fragment Shader Do?

 Vertex shader just produces interpolated values

 Interpolated vector for position

 Interpolated color for the pixel

 Fragment shader assigns the “official” color

 May be the color interpolated by vertex shader

 May be some variation of this color

 Often applies post-processing effects

 Example: gaussian blur

 Sometimes the more complicated of the two

The Graphics Pipeline12

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Colors

in vec4 aColor;

out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position

and color

void main(void) {

 gl_Position =

uCamera*aPosition;

 outColor = aColor;

} The Graphics Pipeline13

A Very Simple Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Color result from

vertex shader

in vec4 outColor;

// Just use color

computed

void main(void) {

 frag_color =

outcolor;

}

Input

Input Input

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Colors

in vec4 aColor;

out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position

and color

void main(void) {

 gl_Position =

uCamera*aPosition;

 outColor = aColor;

} The Graphics Pipeline14

A Very Simple Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Color result from

vertex shader

in vec4 outColor;

// Just use color

computed

void main(void) {

 frag_color =

outcolor;

}

Input

Input Input

Output

Output

Output

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Colors

in vec4 aColor;

out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position

and color

void main(void) {

 gl_Position =

uCamera*aPosition;

 outColor = aColor;

} The Graphics Pipeline15

A Very Simple Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Color result from

vertex shader

in vec4 outColor;

// Just use color

computed

void main(void) {

 frag_color =

outcolor;

}

Input

Input Input

Output

Output

Output
Pass-through

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Colors

in vec4 aColor;

out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position

and color

void main(void) {

 gl_Position =

uCamera*aPosition;

 outColor = aColor;

} The Graphics Pipeline16

A Very Simple Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Color result from

vertex shader

in vec4 outColor;

// Just use color

computed

void main(void) {

 frag_color =

outcolor;

}

Input

Input Input

Output

Output

Output

gamedesigninitiative
at cornell university

the

Uniforms “Never” Change

 We stream vertex data to the shader

 Put all vertex data into a giant array

 Send it all to graphics card at once

 Changing a uniform breaks the stream

 Have to break up array into parts

 Send one part with first value of uniform

 Send next part with second value of the uniform

 This can slow down the framerate

 Unlikely in this class unless lots of sprites

 But should be aware of the cost

The Graphics Pipeline17

gamedesigninitiative
at cornell university

the

Uniforms “Never” Change

 We stream vertex data to the shader

 Put all vertex data into a giant array

 Send it all to graphics card at once

 Changing a uniform breaks the stream

 Have to break up the array into parts

 Send one part with first value of uniform

 Send next part with second value of the uniform

 This can slow down the framerate

 Unlikely in this class unless lots of sprites

 But should be aware of the cost

The Graphics Pipeline18

Will the camera

ever change?

gamedesigninitiative
at cornell university

the

Images Have Texture Coordinates

The Graphics Pipeline19

(0,0) (1,0)

(0,1) (1,1)

gamedesigninitiative
at cornell university

the

Vertex Data Can Include Texture Data

The Graphics Pipeline20

(0,0)

(-0.37,1)

(50,0)

(1.37,1)

(25,43)

(0.5,-0.5)
Position (Required)

Texture Coords

(Optional)

gamedesigninitiative
at cornell university

the

Vertex Shader Interpolates Pixels

The Graphics Pipeline21

(0,0)

(-0.37,1)

(50,0)

(1.37,1)

(25,43)

(0.5,-0.5)
Position (Required)

Texture Coords

(Optional)

(12,21)

(0.048,0.27)

(25,14)

(0.5,0.51)

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Texture Coords

in vec4 aCoord;

out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position

and coords

void main(void) {

 gl_Position =

uCamera*aPosition;

 outCoord = aCoord;

} The Graphics Pipeline22

A Texture Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Texture coord from

vertex shader

in vec4 outCoord;

uniform sampler2D

uTexture;

// Use texture to compute

color

void main(void) {

 frag_color =

texture(uTexture,

outCoord);

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Texture Coords

in vec4 aCoord;

out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position

and coords

void main(void) {

 gl_Position =

uCamera*aPosition;

 outCoord = aCoord;

} The Graphics Pipeline23

A Texture Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Texture coord from

vertex shader

in vec4 outCoord;

uniform sampler2D

uTexture;

// Use texture to compute

color

void main(void) {

 frag_color =

texture(uTexture,

outCoord);

texture
+

coord
=

color

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Texture Coords

in vec4 aCoord;

out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position

and coords

void main(void) {

 gl_Position =

uCamera*aPosition;

 outCoord = aCoord;

} The Graphics Pipeline24

A Texture Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Texture coord from

vertex shader

in vec4 outCoord;

uniform sampler2D

uTexture;

// Use texture to compute

color

void main(void) {

 frag_color =

texture(uTexture,

outCoord);

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Texture Coords

in vec4 aCoord;

out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position

and coords

void main(void) {

 gl_Position =

uCamera*aPosition;

 outCoord = aCoord;

} The Graphics Pipeline25

A Texture Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Texture coord from

vertex shader

in vec4 outCoord;

uniform sampler2D

uTexture;

// Use texture to compute

color

void main(void) {

 frag_color =

texture(uTexture,

outCoord);

Changing the texture

stalls the stream

gamedesigninitiative
at cornell university

the

 SpriteBatch has a

shader

 Methods create vertices

 Vertices have color, texture

 Sends vertices to shader

 Groups data by uniforms

 Adds all vertices to a set

 Breaks set into batches

 Uniforms fixed each batch

 Each texture is a new batch

 How often do you switch?
The Graphics Pipeline26

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

 SpriteBatch has a

shader

 Methods create vertices

 Vertices have color, texture

 Sends vertices to shader

 Groups data by uniforms

 Adds all vertices to a set

 Breaks set into batches

 Uniforms fixed each batch

 Each texture is a new batch

 How often do you switch?
The Graphics Pipeline27

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

 SpriteBatch has a

shader

 Methods create vertices

 Vertices have color, texture

 Sends vertices to shader

 Groups data by uniforms

 Adds all vertices to a set

 Breaks set into batches

 Uniforms fixed each batch

 Each texture is a new batch

 How often do you switch?
The Graphics Pipeline28

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

 SpriteBatch has a

shader

 Methods create vertices

 Vertices have color, texture

 Sends vertices to shader

 Groups data by uniforms

 Adds all vertices to a set

 Breaks set into batches

 Uniforms fixed each batch

 Each texture is a new batch

 How often do you switch?
The Graphics Pipeline29

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

 Idea: Never switch textures

 Sprite sheet is many images

 We can draw part of texture

 One texture for everything?

 Called a texture atlas

 Supported in CUGL

 See file loading.json

 Ideal for interface design

 Has some disadvantages

 Textures cannot repeat

 Recall texture size limits

The Graphics Pipeline30

Optimizing Performance: Atlases

gamedesigninitiative
at cornell university

the

 Idea: Never switch textures

 Sprite sheet is many images

 We can draw part of texture

 One texture for everything?

 Called a texture atlas

 Supported in CUGL

 See file loading.json

 Ideal for interface design

 Has some disadvantages

 Textures cannot repeat

 Recall texture size limits

The Graphics Pipeline31

Optimizing Performance: Atlases

Better: Vulkan supports

Texture array uniforms

gamedesigninitiative
at cornell university

the

 Each Font creates an atlas

 Reason you must specify size

 Atlas limited to 512x512

 Multiple atlases if necessary

 TextLayout makes

vertices

 Quads made from font metrics

 Includes kerning, alignments

 Vertices include texture cords

 This makes text very fast

 Generating vertices is quick

 Actual font cached in atlas(es)

The Graphics Pipeline32

Aside: This is How Fonts Work

gamedesigninitiative
at cornell university

the

 Each Font creates an atlas

 Reason you must specify size

 Atlas limited to 512x512

 Multiple atlases if necessary

 TextLayout makes

vertices

 Quads made from font metrics

 Includes kerning, alignments

 Vertices include texture cords

 This makes text very fast

 Generating vertices is quick

 Actual font cached in atlas(es)

The Graphics Pipeline33

Aside: This is How Fonts Work

Hello
World

gamedesigninitiative
at cornell university

the

 Each Font creates an atlas

 Reason you must specify size

 Atlas limited to 512x512

 Multiple atlases if necessary

 TextLayout makes

vertices

 Quads made from font metrics

 Includes kerning, alignments

 Vertices include texture cords

 This makes text very fast

 Generating vertices is quick

 Actual font cached in atlas(es)

The Graphics Pipeline34

Aside: This is How Fonts Work

Hello
World

Which glyphs

go in the atlas?

gamedesigninitiative
at cornell university

the

 Provides support for

 Solid/vertex colors

 Color gradients (linear, radial)

 Textures/texture coords

 Gaussian blur

 Scissoring/masking

 Not “user-serviceable”

 Do not try to replace this

 Will break all the UI code

 Want a custom shader?

 Make a new pipeline

The Graphics Pipeline35

The SpriteBatch Shader

gamedesigninitiative
at cornell university

the

 Provides support for

 Solid/vertex colors

 Color gradients (linear, radial)

 Textures/texture coords

 Gaussian blur

 Scissoring/masking

 Not “user-serviceable”

 Do not try to replace this

 Will break all the UI code

 Want a custom shader?

 Make a new pipeline

The Graphics Pipeline36

The SpriteBatch Shader

More on that

next time

gamedesigninitiative
at cornell university

the

 Gradient in

cugl::graphics

 Only supports two stops

 More colors = more shapes

 Has its own coordinates

 Defined on unique square

 Coords define the “stretch”

 Often same as texture cords

 Primarily nice in UI effects

 Can be defined in JSON

 But no Figma support
The Graphics Pipeline37

Gradients

Linear

Radial

Box

gamedesigninitiative
at cornell university

the

 Mask part of the screen

 Defined as a rectangle

 Drops pixels outside rect

 Scissors can be…

 Rotated, Transformed

 Intersected

 But not really both

 Used by ScrollPane

 Makes internal “window”

 Can scroll the contents

The Graphics Pipeline38

Scissors

gamedesigninitiative
at cornell university

the

 Templated class Mesh<T>

 Type is a vertex class

 Mesh adds geometry info

 CUGL meshes are special

 Usually an OpenGL buffer

 But ours is independent!

 Will carry over to Vulkan

 Vertex must match shader

 Check each vertex shader

in

 Must have attribute for it
The Graphics Pipeline39

What Goes to The Shader?

gamedesigninitiative
at cornell university

the

The Vertex Class

 Can be any class of your making

 Should have position (Vec2, Vec3, or Vec4)

 Can have anything else that you want

 There are (almost) no restrictions

 Example: SpriteVertex

 Position (Vec2)

 Color (unsigned int)

 Texture coords (Vec2)

 Gradient coords (Vec2)

The Graphics Pipeline40

gamedesigninitiative
at cornell university

the

The Vertex Class

 Can be any class of your making

 Should have position (Vec2, Vec3, or Vec4)

 Can have anything else that you want

 There are (almost) no restrictions

 Example: SpriteVertex

 Position (Vec2)

 Color (unsigned int)

 Texture coords (Vec2)

 Gradient coords (Vec2)

The Graphics Pipeline41

See code demos for

other examples

gamedesigninitiative
at cornell university

the

 Need two things to define shape

 An array of vertices

 An array of indices

 Indices refer to array positions

 Used to create triangles

 Meaning depends on command

 Poly2 does most of this for you!

 Only supports triangle lists

 Also only has positional data

 But can initialize a Mesh

The Graphics Pipeline42

The Mesh Geometry

gamedesigninitiative
at cornell university

the

 Lists are the least compact

 Lists need 3n indices

 Strip uses n+2 indices

 Fan also uses n+2 indices

 But lists are compositional

 Lists can be concatenated

 Not true for fan/strips

 Needs fewer commands

 How sprite batch works

 Just one

Mesh<SpriteVertex>
The Graphics Pipeline43

Why Triangle Lists?

{0,1,2,2,3,0} {0,1,2,2,3,0}

{0,1,2,2,3,0,4,5,6,6,7,0}

gamedesigninitiative
at cornell university

the

Standard Mesh Creation

 Use CUGL tools to create a geometry

 Geometry defines position and triangles

 End result is (typically) a Poly2 object

 Just like the geometry lab

 Pass Poly2 to the Mesh<T> constructor

 Your vertex must have a position attribute

 All other values are set to the default

 Manually adjust other attributes

 Usually just texture and/or color

 Choices depend on your shader

The Graphics Pipeline44

gamedesigninitiative
at cornell university

the

How Do We Talk to The Shader?

Next Time!

The Graphics Pipeline45

gamedesigninitiative
at cornell university

the

Summary

 CUGL uses OpenGLES 3 for rendering

 Uses shaders to produces triangles on screen

 SpriteBatch (usally) makes all of this easy

 All data sent to graphics card is a mesh

 An array of vertices

 A geometry on those vertices

 Like Poly2 but with more attributes

 Shaders render a mesh to the screen

 Specify data at each vertex

 Intermediate pixels are interpolated

The Graphics Pipeline46

	Slide 1: The Graphics Pipeline (Overview)
	Slide 2: Caveat About Today’s Lecture
	Slide 3: Graphics Cards Draw Triangles
	Slide 4: Triangles Can Be Colored
	Slide 5: Triangles Can Be Textured
	Slide 6: Triangles Can Be Both
	Slide 7: A Sprite is (Often) Two Triangles
	Slide 8: Triangles are Drawn with Shaders
	Slide 9: Vertex Data Defines the Triangle
	Slide 10: Vertex Data Defines the Triangle
	Slide 11: Vertex Shader Interpolates Pixels
	Slide 12: What Does The Fragment Shader Do?
	Slide 13: A Very Simple Shader
	Slide 14: A Very Simple Shader
	Slide 15: A Very Simple Shader
	Slide 16: A Very Simple Shader
	Slide 17: Uniforms “Never” Change
	Slide 18: Uniforms “Never” Change
	Slide 19: Images Have Texture Coordinates
	Slide 20: Vertex Data Can Include Texture Data
	Slide 21: Vertex Shader Interpolates Pixels
	Slide 22: A Texture Shader
	Slide 23: A Texture Shader
	Slide 24: A Texture Shader
	Slide 25: A Texture Shader
	Slide 26: How Does a SpriteBatch Work?
	Slide 27: How Does a SpriteBatch Work?
	Slide 28: How Does a SpriteBatch Work?
	Slide 29: How Does a SpriteBatch Work?
	Slide 30: Optimizing Performance: Atlases
	Slide 31: Optimizing Performance: Atlases
	Slide 32: Aside: This is How Fonts Work
	Slide 33: Aside: This is How Fonts Work
	Slide 34: Aside: This is How Fonts Work
	Slide 35: The SpriteBatch Shader
	Slide 36: The SpriteBatch Shader
	Slide 37: Gradients
	Slide 38: Scissors
	Slide 39: What Goes to The Shader?
	Slide 40: The Vertex Class
	Slide 41: The Vertex Class
	Slide 42: The Mesh Geometry
	Slide 43: Why Triangle Lists?
	Slide 44: Standard Mesh Creation
	Slide 45: How Do We Talk to The Shader?
	Slide 46: Summary

