
gamedesigninitiative
at cornell university

the

The Graphics Pipeline

(Overview)

Lecture 12

gamedesigninitiative
at cornell university

the

Caveat About Today’s Lecture

 Today’s focus is on OpenGL

 The cross-platform graphics API for Indie games

 Vulkan will eventually take over, but not there yet

 CUGL uses OpenGLES 3 for rendering

 Is a proper subset of OpenGL 3.x

 Designed with mobile devices in mind

 Much of what we say is true in other APIs

 But the pipeline will be slightly different

 In the case of Vulkan, a lot different

The Graphics Pipeline2

gamedesigninitiative
at cornell university

the

Graphics Cards Draw Triangles

The Graphics Pipeline3

gamedesigninitiative
at cornell university

the

Triangles Can Be Colored

The Graphics Pipeline4

gamedesigninitiative
at cornell university

the

Triangles Can Be Textured

The Graphics Pipeline5

gamedesigninitiative
at cornell university

the

Triangles Can Be Both

The Graphics Pipeline6

gamedesigninitiative
at cornell university

the

A Sprite is (Often) Two Triangles

The Graphics Pipeline7

gamedesigninitiative
at cornell university

the

Triangles are Drawn with Shaders

The Graphics Pipeline8

Vertex

Shader

Fragment

Shader

Vertex

Data

Pixel

Data
Image

Uniforms

gamedesigninitiative
at cornell university

the

Vertex Data Defines the Triangle

The Graphics Pipeline9

(0,0) (0,50)

(25,43)Position (Required)

gamedesigninitiative
at cornell university

the

Vertex Data Defines the Triangle

The Graphics Pipeline10

(0,0)

(0,0,1,1)

(0,50)

(0,1,0,1)

(25,43)

(1,0,0,1)
Position (Required)

Color (Optional)

gamedesigninitiative
at cornell university

the

Vertex Shader Interpolates Pixels

The Graphics Pipeline11

(0,0)

(0,0,1,1)

(0,50)

(0,1,0,1)

(25,43)

(1,0,0,1)
Position (Required)

Color (Optional)

(12,21)

(0.49,0,0.48,1)

(25,14)

(0.33,0.33,0.33,1)

gamedesigninitiative
at cornell university

the

What Does The Fragment Shader Do?

 Vertex shader just produces interpolated values

 Interpolated vector for position

 Interpolated color for the pixel

 Fragment shader assigns the “official” color

 May be the color interpolated by vertex shader

 May be some variation of this color

 Often applies post-processing effects

 Example: gaussian blur

 Sometimes the more complicated of the two

The Graphics Pipeline12

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Colors

in vec4 aColor;

out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position

and color

void main(void) {

 gl_Position =

uCamera*aPosition;

 outColor = aColor;

} The Graphics Pipeline13

A Very Simple Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Color result from

vertex shader

in vec4 outColor;

// Just use color

computed

void main(void) {

 frag_color =

outcolor;

}

Input

Input Input

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Colors

in vec4 aColor;

out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position

and color

void main(void) {

 gl_Position =

uCamera*aPosition;

 outColor = aColor;

} The Graphics Pipeline14

A Very Simple Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Color result from

vertex shader

in vec4 outColor;

// Just use color

computed

void main(void) {

 frag_color =

outcolor;

}

Input

Input Input

Output

Output

Output

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Colors

in vec4 aColor;

out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position

and color

void main(void) {

 gl_Position =

uCamera*aPosition;

 outColor = aColor;

} The Graphics Pipeline15

A Very Simple Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Color result from

vertex shader

in vec4 outColor;

// Just use color

computed

void main(void) {

 frag_color =

outcolor;

}

Input

Input Input

Output

Output

Output
Pass-through

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Colors

in vec4 aColor;

out vec4 outColor;

uniform mat4 uCamera;

// Interpolate position

and color

void main(void) {

 gl_Position =

uCamera*aPosition;

 outColor = aColor;

} The Graphics Pipeline16

A Very Simple Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Color result from

vertex shader

in vec4 outColor;

// Just use color

computed

void main(void) {

 frag_color =

outcolor;

}

Input

Input Input

Output

Output

Output

gamedesigninitiative
at cornell university

the

Uniforms “Never” Change

 We stream vertex data to the shader

 Put all vertex data into a giant array

 Send it all to graphics card at once

 Changing a uniform breaks the stream

 Have to break up array into parts

 Send one part with first value of uniform

 Send next part with second value of the uniform

 This can slow down the framerate

 Unlikely in this class unless lots of sprites

 But should be aware of the cost

The Graphics Pipeline17

gamedesigninitiative
at cornell university

the

Uniforms “Never” Change

 We stream vertex data to the shader

 Put all vertex data into a giant array

 Send it all to graphics card at once

 Changing a uniform breaks the stream

 Have to break up the array into parts

 Send one part with first value of uniform

 Send next part with second value of the uniform

 This can slow down the framerate

 Unlikely in this class unless lots of sprites

 But should be aware of the cost

The Graphics Pipeline18

Will the camera

ever change?

gamedesigninitiative
at cornell university

the

Images Have Texture Coordinates

The Graphics Pipeline19

(0,0) (1,0)

(0,1) (1,1)

gamedesigninitiative
at cornell university

the

Vertex Data Can Include Texture Data

The Graphics Pipeline20

(0,0)

(-0.37,1)

(50,0)

(1.37,1)

(25,43)

(0.5,-0.5)
Position (Required)

Texture Coords

(Optional)

gamedesigninitiative
at cornell university

the

Vertex Shader Interpolates Pixels

The Graphics Pipeline21

(0,0)

(-0.37,1)

(50,0)

(1.37,1)

(25,43)

(0.5,-0.5)
Position (Required)

Texture Coords

(Optional)

(12,21)

(0.048,0.27)

(25,14)

(0.5,0.51)

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Texture Coords

in vec4 aCoord;

out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position

and coords

void main(void) {

 gl_Position =

uCamera*aPosition;

 outCoord = aCoord;

} The Graphics Pipeline22

A Texture Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Texture coord from

vertex shader

in vec4 outCoord;

uniform sampler2D

uTexture;

// Use texture to compute

color

void main(void) {

 frag_color =

texture(uTexture,

outCoord);

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Texture Coords

in vec4 aCoord;

out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position

and coords

void main(void) {

 gl_Position =

uCamera*aPosition;

 outCoord = aCoord;

} The Graphics Pipeline23

A Texture Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Texture coord from

vertex shader

in vec4 outCoord;

uniform sampler2D

uTexture;

// Use texture to compute

color

void main(void) {

 frag_color =

texture(uTexture,

outCoord);

texture
+

coord
=

color

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Texture Coords

in vec4 aCoord;

out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position

and coords

void main(void) {

 gl_Position =

uCamera*aPosition;

 outCoord = aCoord;

} The Graphics Pipeline24

A Texture Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Texture coord from

vertex shader

in vec4 outCoord;

uniform sampler2D

uTexture;

// Use texture to compute

color

void main(void) {

 frag_color =

texture(uTexture,

outCoord);

gamedesigninitiative
at cornell university

the

Vertex Shader

// Positions

in vec4 aPosition;

// Texture Coords

in vec4 aCoord;

out vec4 outCoord;

uniform mat4 uCamera;

// Interpolate position

and coords

void main(void) {

 gl_Position =

uCamera*aPosition;

 outCoord = aCoord;

} The Graphics Pipeline25

A Texture Shader

Fragment Shader

// The output color

out vec4 frag_color;

// Texture coord from

vertex shader

in vec4 outCoord;

uniform sampler2D

uTexture;

// Use texture to compute

color

void main(void) {

 frag_color =

texture(uTexture,

outCoord);

Changing the texture

stalls the stream

gamedesigninitiative
at cornell university

the

 SpriteBatch has a

shader

 Methods create vertices

 Vertices have color, texture

 Sends vertices to shader

 Groups data by uniforms

 Adds all vertices to a set

 Breaks set into batches

 Uniforms fixed each batch

 Each texture is a new batch

 How often do you switch?
The Graphics Pipeline26

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

 SpriteBatch has a

shader

 Methods create vertices

 Vertices have color, texture

 Sends vertices to shader

 Groups data by uniforms

 Adds all vertices to a set

 Breaks set into batches

 Uniforms fixed each batch

 Each texture is a new batch

 How often do you switch?
The Graphics Pipeline27

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

 SpriteBatch has a

shader

 Methods create vertices

 Vertices have color, texture

 Sends vertices to shader

 Groups data by uniforms

 Adds all vertices to a set

 Breaks set into batches

 Uniforms fixed each batch

 Each texture is a new batch

 How often do you switch?
The Graphics Pipeline28

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

 SpriteBatch has a

shader

 Methods create vertices

 Vertices have color, texture

 Sends vertices to shader

 Groups data by uniforms

 Adds all vertices to a set

 Breaks set into batches

 Uniforms fixed each batch

 Each texture is a new batch

 How often do you switch?
The Graphics Pipeline29

How Does a SpriteBatch Work?

gamedesigninitiative
at cornell university

the

 Idea: Never switch textures

 Sprite sheet is many images

 We can draw part of texture

 One texture for everything?

 Called a texture atlas

 Supported in CUGL

 See file loading.json

 Ideal for interface design

 Has some disadvantages

 Textures cannot repeat

 Recall texture size limits

The Graphics Pipeline30

Optimizing Performance: Atlases

gamedesigninitiative
at cornell university

the

 Idea: Never switch textures

 Sprite sheet is many images

 We can draw part of texture

 One texture for everything?

 Called a texture atlas

 Supported in CUGL

 See file loading.json

 Ideal for interface design

 Has some disadvantages

 Textures cannot repeat

 Recall texture size limits

The Graphics Pipeline31

Optimizing Performance: Atlases

Better: Vulkan supports

Texture array uniforms

gamedesigninitiative
at cornell university

the

 Each Font creates an atlas

 Reason you must specify size

 Atlas limited to 512x512

 Multiple atlases if necessary

 TextLayout makes

vertices

 Quads made from font metrics

 Includes kerning, alignments

 Vertices include texture cords

 This makes text very fast

 Generating vertices is quick

 Actual font cached in atlas(es)

The Graphics Pipeline32

Aside: This is How Fonts Work

gamedesigninitiative
at cornell university

the

 Each Font creates an atlas

 Reason you must specify size

 Atlas limited to 512x512

 Multiple atlases if necessary

 TextLayout makes

vertices

 Quads made from font metrics

 Includes kerning, alignments

 Vertices include texture cords

 This makes text very fast

 Generating vertices is quick

 Actual font cached in atlas(es)

The Graphics Pipeline33

Aside: This is How Fonts Work

Hello
World

gamedesigninitiative
at cornell university

the

 Each Font creates an atlas

 Reason you must specify size

 Atlas limited to 512x512

 Multiple atlases if necessary

 TextLayout makes

vertices

 Quads made from font metrics

 Includes kerning, alignments

 Vertices include texture cords

 This makes text very fast

 Generating vertices is quick

 Actual font cached in atlas(es)

The Graphics Pipeline34

Aside: This is How Fonts Work

Hello
World

Which glyphs

go in the atlas?

gamedesigninitiative
at cornell university

the

 Provides support for

 Solid/vertex colors

 Color gradients (linear, radial)

 Textures/texture coords

 Gaussian blur

 Scissoring/masking

 Not “user-serviceable”

 Do not try to replace this

 Will break all the UI code

 Want a custom shader?

 Make a new pipeline

The Graphics Pipeline35

The SpriteBatch Shader

gamedesigninitiative
at cornell university

the

 Provides support for

 Solid/vertex colors

 Color gradients (linear, radial)

 Textures/texture coords

 Gaussian blur

 Scissoring/masking

 Not “user-serviceable”

 Do not try to replace this

 Will break all the UI code

 Want a custom shader?

 Make a new pipeline

The Graphics Pipeline36

The SpriteBatch Shader

More on that

next time

gamedesigninitiative
at cornell university

the

 Gradient in

cugl::graphics

 Only supports two stops

 More colors = more shapes

 Has its own coordinates

 Defined on unique square

 Coords define the “stretch”

 Often same as texture cords

 Primarily nice in UI effects

 Can be defined in JSON

 But no Figma support
The Graphics Pipeline37

Gradients

Linear

Radial

Box

gamedesigninitiative
at cornell university

the

 Mask part of the screen

 Defined as a rectangle

 Drops pixels outside rect

 Scissors can be…

 Rotated, Transformed

 Intersected

 But not really both

 Used by ScrollPane

 Makes internal “window”

 Can scroll the contents

The Graphics Pipeline38

Scissors

gamedesigninitiative
at cornell university

the

 Templated class Mesh<T>

 Type is a vertex class

 Mesh adds geometry info

 CUGL meshes are special

 Usually an OpenGL buffer

 But ours is independent!

 Will carry over to Vulkan

 Vertex must match shader

 Check each vertex shader

in

 Must have attribute for it
The Graphics Pipeline39

What Goes to The Shader?

gamedesigninitiative
at cornell university

the

The Vertex Class

 Can be any class of your making

 Should have position (Vec2, Vec3, or Vec4)

 Can have anything else that you want

 There are (almost) no restrictions

 Example: SpriteVertex

 Position (Vec2)

 Color (unsigned int)

 Texture coords (Vec2)

 Gradient coords (Vec2)

The Graphics Pipeline40

gamedesigninitiative
at cornell university

the

The Vertex Class

 Can be any class of your making

 Should have position (Vec2, Vec3, or Vec4)

 Can have anything else that you want

 There are (almost) no restrictions

 Example: SpriteVertex

 Position (Vec2)

 Color (unsigned int)

 Texture coords (Vec2)

 Gradient coords (Vec2)

The Graphics Pipeline41

See code demos for

other examples

gamedesigninitiative
at cornell university

the

 Need two things to define shape

 An array of vertices

 An array of indices

 Indices refer to array positions

 Used to create triangles

 Meaning depends on command

 Poly2 does most of this for you!

 Only supports triangle lists

 Also only has positional data

 But can initialize a Mesh

The Graphics Pipeline42

The Mesh Geometry

gamedesigninitiative
at cornell university

the

 Lists are the least compact

 Lists need 3n indices

 Strip uses n+2 indices

 Fan also uses n+2 indices

 But lists are compositional

 Lists can be concatenated

 Not true for fan/strips

 Needs fewer commands

 How sprite batch works

 Just one

Mesh<SpriteVertex>
The Graphics Pipeline43

Why Triangle Lists?

{0,1,2,2,3,0} {0,1,2,2,3,0}

{0,1,2,2,3,0,4,5,6,6,7,0}

gamedesigninitiative
at cornell university

the

Standard Mesh Creation

 Use CUGL tools to create a geometry

 Geometry defines position and triangles

 End result is (typically) a Poly2 object

 Just like the geometry lab

 Pass Poly2 to the Mesh<T> constructor

 Your vertex must have a position attribute

 All other values are set to the default

 Manually adjust other attributes

 Usually just texture and/or color

 Choices depend on your shader

The Graphics Pipeline44

gamedesigninitiative
at cornell university

the

How Do We Talk to The Shader?

Next Time!

The Graphics Pipeline45

gamedesigninitiative
at cornell university

the

Summary

 CUGL uses OpenGLES 3 for rendering

 Uses shaders to produces triangles on screen

 SpriteBatch (usally) makes all of this easy

 All data sent to graphics card is a mesh

 An array of vertices

 A geometry on those vertices

 Like Poly2 but with more attributes

 Shaders render a mesh to the screen

 Specify data at each vertex

 Intermediate pixels are interpolated

The Graphics Pipeline46

	Slide 1: The Graphics Pipeline (Overview)
	Slide 2: Caveat About Today’s Lecture
	Slide 3: Graphics Cards Draw Triangles
	Slide 4: Triangles Can Be Colored
	Slide 5: Triangles Can Be Textured
	Slide 6: Triangles Can Be Both
	Slide 7: A Sprite is (Often) Two Triangles
	Slide 8: Triangles are Drawn with Shaders
	Slide 9: Vertex Data Defines the Triangle
	Slide 10: Vertex Data Defines the Triangle
	Slide 11: Vertex Shader Interpolates Pixels
	Slide 12: What Does The Fragment Shader Do?
	Slide 13: A Very Simple Shader
	Slide 14: A Very Simple Shader
	Slide 15: A Very Simple Shader
	Slide 16: A Very Simple Shader
	Slide 17: Uniforms “Never” Change
	Slide 18: Uniforms “Never” Change
	Slide 19: Images Have Texture Coordinates
	Slide 20: Vertex Data Can Include Texture Data
	Slide 21: Vertex Shader Interpolates Pixels
	Slide 22: A Texture Shader
	Slide 23: A Texture Shader
	Slide 24: A Texture Shader
	Slide 25: A Texture Shader
	Slide 26: How Does a SpriteBatch Work?
	Slide 27: How Does a SpriteBatch Work?
	Slide 28: How Does a SpriteBatch Work?
	Slide 29: How Does a SpriteBatch Work?
	Slide 30: Optimizing Performance: Atlases
	Slide 31: Optimizing Performance: Atlases
	Slide 32: Aside: This is How Fonts Work
	Slide 33: Aside: This is How Fonts Work
	Slide 34: Aside: This is How Fonts Work
	Slide 35: The SpriteBatch Shader
	Slide 36: The SpriteBatch Shader
	Slide 37: Gradients
	Slide 38: Scissors
	Slide 39: What Goes to The Shader?
	Slide 40: The Vertex Class
	Slide 41: The Vertex Class
	Slide 42: The Mesh Geometry
	Slide 43: Why Triangle Lists?
	Slide 44: Standard Mesh Creation
	Slide 45: How Do We Talk to The Shader?
	Slide 46: Summary

