
gamedesigninitiative
at cornell university

the

Concurrency &

Multithreading

Lecture 11



gamedesigninitiative
at cornell university

the

Games are Naturally Multithreaded

 The core game loop is time constrained

 Frame rate sets a budget of how much you can do

 Exceeding that budget causes frame rate drops

 Sometimes we need an extra thread to …

 Offload tasks that block drawing (asset loading)

 Offload tasks that slow drawing (pathfinding)

 Execute tasks decoupled from drawing (audio)

 Part of architecture spec: computation model

Multithreading2



gamedesigninitiative
at cornell university

the

Multithreading in CUGL

 CUGL has three primary threads

 The Application, or main graphics thread

 The AssetManager thread, for loading assets

 The AudioEngine thread, for audio playback

 Note that only Application is required

 Also has tools for making your own threads

 Most are built on top of C++ and std::thread

 But there are some unique features too

Multithreading3



gamedesigninitiative
at cornell university

the

Multithreading in CUGL

 CUGL has three primary threads

 The Application, or main graphics thread

 The AssetManager thread, for loading assets

 The AudioEngine thread, for audio playback

 Note that only Application is required

 Also has tools for making your own threads

 Most are built on top of C++ and std::thread

 But there are some unique features too

Multithreading4

Understanding the three threads

can help us to make our own.



gamedesigninitiative
at cornell university

the

Cull non-visible objects

Transform visible objects

Draw to backing buffer

Multithreading5 

Recall: The Application Thread

Update

Draw

Display backing buffer

Receive player input

Process player actions

Interactions (e.g. physics)

Process NPC actions60 times/s

=

16.7 ms



gamedesigninitiative
at cornell university

the

Multithreading6

Recall: The AssetManager Thread

Asset 
Manager

Specify Asset

Game Thread Asset Thread

Update

Draw

Notify done

 Works as a dictionary

 Each asset given a key

 Can access asset by key

 But templated by type



gamedesigninitiative
at cornell university

the

Multithreading7

Recall: The AssetManager Thread

Asset 
Manager

Specify Asset

Asset Thread

Update

Draw

Notify done

 Works as a dictionary

 Each asset given a key

 Can access asset by key

 But templated by type

Game Thread



gamedesigninitiative
at cornell university

the

Multithreading8

Asset Loading Consists of Tasks

Load Font
"Times.t

tf"

Load Image
"smile.p

ng"

Load Widget
"menu.js

on"

Load Sound
"music.o

gg"

Task 1 Task 2 Task 3 Task 4



gamedesigninitiative
at cornell university

the

Multithreading9

Ideally, Each One is a Thread

Load Font
"Times.t

tf"

Load Image
"smile.p

ng"

Load Widget
"menu.js

on"

Load Sound
"music.o

gg"

Task 1 Task 2 Task 3 Task 4

Thread 1 Thread 2 Thread 3 Thread 4



gamedesigninitiative
at cornell university

the

Multithreading10

Ideally, Each One is a Thread

Load Font
"Times.t

tf"

Load Image
"smile.p

ng"

Load Widget
"menu.js

on"

Load Sound
"music.o

gg"

Task 1 Task 2 Task 3 Task 4

Thread 1 Thread 2 Thread 3 Thread 4

But We Cannot Do This



gamedesigninitiative
at cornell university

the

What is the Problem?

 Some tasks have shared resources

 Example: Fonts all use same engine to make atlases

 Cannot execute without protecting critical section

 Typically easier to just not do them concurrently

 Some tasks have dependencies

 Example: Widgets must come after images, fonts

 Forces an order on the asset loading

 What we want is a task service manager

 Executes given tasks in a partial order

Multithreading11



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading12

 Threads + scheduler

 Scheduler puts tasks thread

 Uses first available thread

 Holds tasks if all busy

Scheduler

Task 1

Task 2

Task 3

Task 4



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading13

Scheduler

Task 1

Task 2

Task 3

Task 4



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading14

Scheduler

Task 2

Task 3

Task 4

Task 1



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading15

Scheduler

Task 3

Task 4
Task 1 Task 2



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading16

Scheduler

Task 4

Task 1 Task 2 Task 3



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading17

Scheduler

Task 1 Task 2 Task 3 Task 4



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading18

Scheduler

Task 5

Task 1 Task 2 Task 3 Task 4



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading19

Scheduler

Task 5

Task 1 Task 3 Task 4



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading20

Scheduler

Task 1 Task 5 Task 3 Task 4



gamedesigninitiative
at cornell university

the

CUGL Support: ThreadPool

 /**
  * Returns a thread pool with the 
given number of threads.
  *
 * @param threads  the number of 
threads in this pool
 *
* @return a thread pool with the 

given number of threads.
  */
static std::shared_ptr<ThreadPool> 
alloc(int threads = 4)

 /**
 * Adds a task to the thread pool.
 *
* @param  task   the function to add 
to the thread pool
*/

Multithreading21



gamedesigninitiative
at cornell university

the

CUGL Support: ThreadPool

 /**
  * Returns a thread pool with the 
given number of threads.
  *
 * @param threads  the number of 
threads in this pool
 *
* @return a thread pool with the 

given number of threads.
  */
static std::shared_ptr<ThreadPool> 
alloc(int threads = 4)

 /**
 * Adds a task to the thread pool.
 *
* @param  task   the function to add 
to the thread pool
*/

Multithreading22

AssetManager is a one thread 

pool



gamedesigninitiative
at cornell university

the

AssetManager

 Map from keys to assets

 All access is templated

 assets-

>get<Texture>("image

")

 Keys unique per asset

 Requires attached loaders

 a->attach<T>(load1-

>getHook());

 a->attach<F>(load2-

>getHook());

 “Hook” is C++ workaround

 For template subclassing

 Make custom loaders easier

CUGL Asset Management

Loader

 void read(key, src, 

cb, async)

 Reads asset from file src

 async indicates if in sep 
thread

 Callback cb executed when 
done

 void read(json, cb, 

async)

 Values key and src now in 
json

 As are other special properties

 void 

materialize(key, 

Mobile Memory23



gamedesigninitiative
at cornell university

the

AssetManager

 Map from keys to assets

 All access is templated

 assets-

>get<Texture>("image

")

 Keys unique per asset

 Requires attached loaders

 a->attach<T>(load1-

>getHook());

 a->attach<F>(load2-

>getHook());

 “Hook” is C++ workaround

 For template subclassing

 Make custom loaders easier

CUGL Asset Management

Loader

 void read(key, src, 

cb, async)

 Reads asset from file src

 async indicates if in sep 
thread

 Callback cb executed when 
done

 void read(json, cb, 

async)

 Values key and src now in 
json

 As are other special properties

 void 

materialize(key, 

Thread Safe

Main Thread 

Only

Thread Safe

Mobile Memory24



gamedesigninitiative
at cornell university

the

AssetManager

 Map from keys to assets

 All access is templated

 assets-

>get<Texture>("image

")

 Keys unique per asset

 Requires attached loaders

 a->attach<T>(load1-

>getHook());

 a->attach<F>(load2-

>getHook());

 “Hook” is C++ workaround

 For template subclassing

 Make custom loaders easier

CUGL Asset Management

Loader

 void read(key, src, 

cb, async)

 Reads asset from file src

 async indicates if in sep 
thread

 Callback cb executed when 
done

 void read(json, cb, 

async)

 Values key and src now in 
json

 As are other special properties

 void 

materialize(key, 

Mobile Memory25

Each loader

is its own task



gamedesigninitiative
at cornell university

the

Executing Tasks on the Main Thread

 Any other thread can access the 

Application

 Use the static method Application::get()

 This class is essentially a singleton

 That object has a schedule method

 Works much like addTask in thread pool

 But executes that task on the main thread

 Executed just before the call to your update

 Scheduling this task is thread safeMultithreading26



gamedesigninitiative
at cornell university

the

The Schedule Method

/**

 * Schedules a task function on 

the main thread.

*

 * @param cb      The task 

callback function

* @param ms   The number of 

milliseconds to delay

*

* @return a unique identifier for 

the task

 */

Uint32 

Multithreading27



gamedesigninitiative
at cornell university

the

The Schedule Method

/**

 * Schedules a task function on 

the main thread.

*

 * @param cb      The task 

callback function

* @param ms   The number of 

milliseconds to delay

*

* @return a unique identifier for 

the task

 */

Uint32 

Multithreading28

Picks first 

frame after 

ms millisec

Return false to 

stop execution



gamedesigninitiative
at cornell university

the

Putting it All Together

Asset 
Manager

addTask(...)

Game Thread Asset Thread

Update

Draw

schedule(…)

Application ThreadPool

Schedules
materializ

e

Multithreading29



gamedesigninitiative
at cornell university

the

Aside: Schedule is Useful in General

 Can specify an event to run in the future

 This is the purpose of the milliseconds

 May be easier than tracking a timer yourself

 Can specify a task to run periodically

 Example: Spawning enemies

 The task returns true if it wants to run again

 Same delay is applied as the first time

 Alternate schedule separates delay and period

Multithreading30



gamedesigninitiative
at cornell university

the

Recall: Playing Sound Directly

Multithreading

Sound 

Card

Game

Loop

Write PCM 

chunk to buffer
PCM data buffer

31

Missing a write causes pops/clicks



gamedesigninitiative
at cornell university

the

The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading32

DSP Graph

Application Thread



gamedesigninitiative
at cornell university

the

The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading33

DSP Graph

Application Thread

modifies

reads



gamedesigninitiative
at cornell university

the

The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading34

DSP Graph

Application Thread

modifies

reads

This is a very complex

Producer/Consumer



gamedesigninitiative
at cornell university

the

Aside: Audio is Not a ThreadPool

 Audio is a dedicated std::thread

 Because it needs to run as long as the game does

 Started when you initialized AudioEngine

 But process is similar to ThreadPool 

 Package your task as a std::function<void()>

 Pass this when you create the thread object

 Difference is that task is in a loop

 Has an attribute called running to manage loop

 When you set to false, the thread is done

Multithreading35



gamedesigninitiative
at cornell university

the

The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading36

DSP Graph

Application Thread

modifies

reads

How do we protect

the critical section?



gamedesigninitiative
at cornell university

the

The Java Approach: Synchronized

public class CriticalSection {

    synchronized void method1() 

{…}

    synchronized void method2() 

{…}

    synchronized void method3() 

{…}

}

Multithreading37

Locked to 

one thread

at a time



gamedesigninitiative
at cornell university

the

The Java Approach: Synchronized

public class CriticalSection {

    synchronized void method1() 

{…}

    synchronized void method2() 

{…}

    synchronized void method3() 

{…}

}

Multithreading38

Locked to 

one thread

at a time

Lock applies 

to all of the 

methods



gamedesigninitiative
at cornell university

the

std::mutex

 Used to protect a code block

 Places lock on code block

 Only one thread can access

 Advantages

 Can replicate 

synchronized

 Relatively easy to use

 Disadvantages

 Locking has some cost

 Deadlocks easy if careless
Multithreading39

C++ Actually Has Two Tools

std::atomic

 Used to protect a variable

 Prevents data races

 Useful for shared setters

 Advantages

 10x faster than 

std::mutex

 Sometimes easy to use

 Disadvantages

 Extremely limited in use

 Advanced use is advanced



gamedesigninitiative
at cornell university

the

std::mutex

 Used to protect a code block

 Places lock on code block

 Only one thread can access

 Advantages

 Can replicate 

synchronized

 Relatively easy to use

 Disadvantages

 Locking has some cost

 Deadlocks easy if careless
Multithreading40

C++ Actually Has Two Tools

std::atomic

 Used to protect a variable

 Prevents data races

 Useful for shared setters

 Advantages

 10x faster than 

std::mutex

 Sometimes easy to use

 Disadvantages

 Extremely limited in use

 Advanced use is advanced

Audio thread 

uses whenever 

it is possible

Audio thread 

uses only when 

it must do so



gamedesigninitiative
at cornell university

the

Replicating Synchronized

class CriticalSection {

private:

     /** Mutex to synchronize 

methods */

    std::mutex _mutex;

public:

    void method() {

        _mutex.lock();        // 

Lock method code

        …

        _mutex.unlock();    // 

Release when done

    }

}

Multithreading41



gamedesigninitiative
at cornell university

the

Obervations About std::mutex

 It is not a reentrant lock (unlike 

synchronized)

 Locking it again inside same class will deadlock

 This matters when you have locks on helpers

 Must use std::recursive_mutex for 

reentrant lock

 Manual lock/unlock calls are frowned upon

 To easy to forget to unlock and deadlock

 Preferred way is to attach a locking object

 When locking object is deleted, so is lock
Multithreading42



gamedesigninitiative
at cornell university

the

Using a Locking Object

class CriticalSection {

private:

     /** Mutex to synchronize 

methods */

    std::mutex _mutex;

public:

    void method() {

        std::lock_guard<std::mutex> 

lock(_mutex);

        …

        // Mutex unlocked once lock 

variable deleted

    }

}

Multithreading43



gamedesigninitiative
at cornell university

the

What If Critical Section is a Variable?

 Example: running attribute controlling 
thread
 Audio thread loops so long as it is true

 Setting it to false stops the audio

 Mutexes exist to prevent inconsistent states

 Either all code is executed, or none is

 Cannot happen to variable assignment, right?

 C++ is not assembly code!

 A single assignment is multiple lines of assembly

 This is not thread safe (especially on Windows)
Multithreading44



gamedesigninitiative
at cornell university

the

What If Critical Section is a Variable?

 Example: running attribute controlling 
thread
 Audio thread loops so long as it is true

 Setting it to false stops the audio

 Mutexes exist to prevent inconsistent states

 Either all code is executed, or none is

 Cannot happen to variable assignment, right?

 C++ is not assembly code!

 A single assignment is multiple lines of assembly

 This is not thread safe (especially on Windows)
Multithreading45

This leads to data races!



gamedesigninitiative
at cornell university

the

std::atomic Protects Assignment

 Template around a type: 

std::atomic<int>

 Supports all primitive C++ types

 Cannot apply to objects in general, but …

 Is possible to make std::shared_ptr atomic

 Supported by two methods

 load(): An atomic getter for the value

 store(value): An atomic setter for the value

 Shared pointers are slightly more complicated
Multithreading46



gamedesigninitiative
at cornell university

the

std::atomic Protects Assignment

 Template around a type: 

std::atomic<int>

 Supports all primitive C++ types

 Cannot apply to objects in general, but …

 Is possible to make std::shared_ptr atomic

 Supported by two methods

 load(): An atomic getter for the value

 store(value): An atomic setter for the value

 Shared pointers are slightly more complicated
Multithreading47

Means assignment is 

atomic, not methods



gamedesigninitiative
at cornell university

the

Only Use If Read/Write Are Separate

class WithAtomics {

private:

     std::atomic<int> _xvar;   // 

Atomic integer

public:

    /** Change the value of X */

    void writeX(int val) { 

_xvar.store(val); }

    /** Use the value of X to compute 

something */

    void readX() {

        int x = _xvar.load();  // Copy 

value to local variable

        // Use x in local computation

    }

Multithreading48



gamedesigninitiative
at cornell university

the

Only Use If Read/Write Are Separate

class WithAtomics {

private:

     std::atomic<int> _xvar;   // 

Atomic integer

public:

    /** Change the value of X */

    void writeX(int val) { 

_xvar.store(val); }

    /** Use the value of X to compute 

something */

    void readX() {

        int x = _xvar.load();  // Copy 

value to local variable

        // Use x in local computation

    }

Multithreading49

Never store _xvar 

in same method



gamedesigninitiative
at cornell university

the

This Is Only Scratching the Surface

 C++ supports monitors and semaphores

 These are used for producer/consumer problem

 Monitor allows consumer to wait on producer

 C++ supports promises

 These are threads that return a value

 Simplify critical section in that case

 Atomics support memory orders

 These are used to optimize performance

 Best avoided unless you know what you are doing

Multithreading50



gamedesigninitiative
at cornell university

the

This Is Only Scratching the Surface

 C++ supports monitors and semaphores

 These are used for producer/consumer problem

 Monitor allows consumer to wait on producer

 C++ supports promises

 These are threads that return a value

 Simplify critical section in that case

 Atomics support memory orders

 These are used to optimize performance

 Best avoided unless you know what you are doing

Multithreading51

See readings if want more



gamedesigninitiative
at cornell university

the

So Why Do We Care?

 All of these threads are made for you!

 But how about making your own threads?

 Pathfinding is a classic example

 NPC behavior can also be long-running

 How can extreme can we go?

 What if all updates are in separate thread?

 Then the main thread just draws! 

 This can give us potentially very high FPS

Multithreading52



gamedesigninitiative
at cornell university

the

This Will Not Quite Work

Multithreading53

Frame 1 Frame 2 Frame 3

Without update, redraw same 

image.

We need animation in the core loop.



gamedesigninitiative
at cornell university

the

Tweening

 Animates timed actions

 Given a duration and a start

 Interpolates scene over time

 Render thread simply…

 accesses all active actions 

 moves them forward by dt

 Gameplay creates actions

 Happens less frequently

 Decoupled from render

Multithreading54

Recall: Two Approaches to Animation

Physics

 Animates physical objects

 Bodies with force and mass

 Also shape for collisions

 Render thread simply…

 steps simulation forward

 renders objects at end

 Gameplay nudges objects

 Might be less frequent

 If so, can also decouple



gamedesigninitiative
at cornell university

the

Tweening

 Animates timed actions

 Given a duration and a start

 Interpolates scene over time

 Render thread simply…

 accesses all active actions 

 moves them forward by dt

 Gameplay creates actions

 Happens less frequently

 Decoupled from render

Multithreading55

Recall: Two Approaches to Animation

Physics

 Animates physical objects

 Bodies with force and mass

 Also shape for collisions

 Render thread simply…

 steps simulation forward

 renders objects at end

 Gameplay nudges objects

 Might be less frequent

 If so, can also decouple

Like networking, animation uses

dead reckoning when missing input



gamedesigninitiative
at cornell university

the

Multithreading56 

A New Architecture

Update Tweening

Simulate Physics

Draw

Process Input

Process Player Actions

Process NPC Actions

Process Interactions

Game

State

Animation Thread Gameplay Thread

reads

modifies



gamedesigninitiative
at cornell university

the

Multithreading57 

A New Architecture

Update Tweening

Simulate Physics

Draw

Process Input

Process Player Actions

Process NPC Actions

Process Interactions

Game

State

Animation Thread Gameplay Thread

reads

modifies

But don’t want 

this slow either!



gamedesigninitiative
at cornell university

the

Summary

 Games engines are naturally multithreaded

 Offload tasks that block drawing (asset loading)

 Offload tasks that slow drawing (pathfinding)

 Execute tasks decoupled from drawing (audio)

 CUGL has native task-based parallelism

 ThreadPool for tasks off the main thread

 Application::schedule for tasks on main thread

 C++ has general-purpose tools for parallelism

 std::thread class for managing other threads

 std::mutex and std::atomic for critical sections

Multithreading58


	Slide 1: Concurrency & Multithreading
	Slide 2: Games are Naturally Multithreaded
	Slide 3: Multithreading in CUGL
	Slide 4: Multithreading in CUGL
	Slide 5: Recall: The Application Thread
	Slide 6: Recall: The AssetManager Thread
	Slide 7: Recall: The AssetManager Thread
	Slide 8: Asset Loading Consists of Tasks
	Slide 9: Ideally, Each One is a Thread
	Slide 10: Ideally, Each One is a Thread
	Slide 11: What is the Problem?
	Slide 12: Solution: Thread Pool
	Slide 13: Solution: Thread Pool
	Slide 14: Solution: Thread Pool
	Slide 15: Solution: Thread Pool
	Slide 16: Solution: Thread Pool
	Slide 17: Solution: Thread Pool
	Slide 18: Solution: Thread Pool
	Slide 19: Solution: Thread Pool
	Slide 20: Solution: Thread Pool
	Slide 21: CUGL Support: ThreadPool
	Slide 22: CUGL Support: ThreadPool
	Slide 23: CUGL Asset Management
	Slide 24: CUGL Asset Management
	Slide 25: CUGL Asset Management
	Slide 26: Executing Tasks on the Main Thread
	Slide 27: The Schedule Method
	Slide 28: The Schedule Method
	Slide 29: Putting it All Together
	Slide 30: Aside: Schedule is Useful in General
	Slide 31: Recall: Playing Sound Directly
	Slide 32: The CUGL Approach
	Slide 33: The CUGL Approach
	Slide 34: The CUGL Approach
	Slide 35: Aside: Audio is Not a ThreadPool
	Slide 36: The CUGL Approach
	Slide 37: The Java Approach: Synchronized
	Slide 38: The Java Approach: Synchronized
	Slide 39: C++ Actually Has Two Tools
	Slide 40: C++ Actually Has Two Tools
	Slide 41: Replicating Synchronized
	Slide 42: Obervations About std::mutex
	Slide 43: Using a Locking Object
	Slide 44: What If Critical Section is a Variable?
	Slide 45: What If Critical Section is a Variable?
	Slide 46: std::atomic Protects Assignment
	Slide 47: std::atomic Protects Assignment
	Slide 48: Only Use If Read/Write Are Separate
	Slide 49: Only Use If Read/Write Are Separate
	Slide 50: This Is Only Scratching the Surface
	Slide 51: This Is Only Scratching the Surface
	Slide 52: So Why Do We Care?
	Slide 53: This Will Not Quite Work
	Slide 54: Recall: Two Approaches to Animation
	Slide 55: Recall: Two Approaches to Animation
	Slide 56: A New Architecture
	Slide 57: A New Architecture
	Slide 58: Summary

