the

gamedesigninitiative
at cornell university
Lecture 11

Concurrency &
Multithreading

Games are Naturally Multithreaded

® The core game loop Is time constrained
® Frame rate sets a budget of how much you can do
® Exceeding that budget causes frame rate drops

® Sometimes we need an extra thread to ...
® Offload tasks that block drawing (asset loading)
® Offload tasks that slow drawing (pathfinding)
® Execute tasks decoupled from drawing (audio)

® Part of architecture spec: computation model

2 Multithreading tggeameclesiglninitia’ciye

lllllllllllllllll

Multithreading in CUGL

® CUGL has three primary threads

® The Application, or main graphics thread

® The AssetManager thread, for loading assets

® The AudioEngine thread, for audio playback
® Note that only Application IS required

® Also has tools for making your own threads
® Most are built on top of C++ and std: : thread
® But there are some unique features too

e —

the . e .
i i amedesigninitiative
3 M u Itl th re ad I n g g §c0rnell university

Multithreading in CUGL

® CUGL has three primary threads
® The Application, or main graphics thread

. f] i N T (N -‘-If\u-f\nt\l 'ct\lﬁ

SR S O[S

Bli Understanding the three threads [
;N can help us to make our own.

® Also has tools for making your own threads
® Most are built on top of C++ and std: : thread
® But there are some unique features too

e —

the . e e e
i i amedesigninitiative
4 M UItI threadlng g a%cornell university

Recall

. The Application Thread

60 times/s

16.7 ms

Multithreading

Receive player input
Process player actions
Process NPC actions
Interactions (e.g. physics)

Cull non-visible objects
Transform visible objects

Draw to backing buffer
Display backing buffer

the . o ey g
gamedesigninitiative

at cornell university

Recall: The AssetManager Thread

Game Thread Asset Thread
Specify Asset \
Asset
\ Manager
Notify done

® \Works as a dictionary
® Each asset given a key

® Can access asset by key
® But templated by type

the . e eie e
Multithreading gamedesigninitiative

Recall: The AssetManager Thread

Game Thread

Asset Thread

moiKs as a dictionary
® Each asset given a key
® (Can access asset by key
® But templated by type

Multithreading

ttttttttttttttttttt

Asset Loading Consists of Tasks

Task 1 Task 2 Task 3 Task 4

Load Font Load Image Load Sound Load Widget

"Times.t "smile.p "music.o "menu. s
tf" ng" g—g" Ol’l"

(R —

8 Multithreading gamedesigninitiative
at cornell university

ldeally, Each One is a Thread

Task 1 Task 2 Task 3 Task 4

Load Font Load Image Load Sound Load Widget

"Times.t "smile.p "music.o "menu. s
tf" ng" g—g" Ol’l"

Threadl Thread2 Thread3 Thread 4

9 Multithreading gamedesigninitiative
at cornell university

ldeally, Each One is a Thread

Task 1 Task 2 Task 3 Task 4

Load Font Load Sound |_oad Widget
"Times.t ' : "music.o "menu. s
~x~x on A

But We Cannot Do This

Threadl Thread2 Thread3 Thread 4

10 Multithreading tgh?nnedesigminiti;atiye

ttttttttttttttttttt

What is the Problem?

® Some tasks have shared resources
® Example: Fonts all use same engine to make atlases
® Cannot execute without protecting critical section
® Typically easier to just not do them concurrently

® Some tasks have dependencies

® Example: Widgets must come after images, fonts
® [orces an order on the asset loading

® \What we want Is a task service manager
® Executes given tasks in a partial order

11 Multithreading tggeamedesiglninitia’ciye

lllllllllllllllll

Solution: Thread Pool

Scheduler

12

® Threads + scheduler

® Scheduler puts tasks thread

® Uses first available thread

® Holds tasks if all busy

Multithreading

e —

ttttttttttttttttttt

Solution: Thread Pool

Task 4

Task 3
Task 2

Task 1

Scheduler

13 Multithreading

(R —

lllllllllllllllllll

Solution: Thread Pool

Task 4

Task 3

Task 2

Scheduler

14 Multithreading tgh?nnedesigminitiz'atiye

(R —

lllllllllllllllllll

Solution: Thread Pool

Task 4

=

15 Multithreading game d signinitiative

lllllllllllllllllll

Solution: Thread Pool

Task 1 Task2

Task 4

Scheduler

16 Multithreading game d signinitiative

lllllllllllllllllll

Solution: Thread Pool

=

(R —

17 Multithreading tgh?nnedesigminitiz'atiye

lllllllllllllllllll

Solution: Thread Pool

EA 7 0 Em

=

(R —

18 Multithreading tgﬂg?amedesigminitiz'ati\‘fe

lllllllllllllllllll

Solution: Thread Pool

s
S

(R —

19 Multithreading tgh?nnedesigminitiz'atiye

lllllllllllllllllll

Solution: Thread Pool

R 0 0 Em

=

(R —

20 Multithreading tgh?nnedesigminitiz'atiye

lllllllllllllllllll

CUGL Support: ThreadPool

o /**
* Returns a thread pool with the

glven number of threads.
*

* @param threads the number of
threads 1n this pool
*

* @dreturn a thread pool with the
glven number of threads.

*/
static std::shared ptr<ThreadPool>
alloc (int threads = 4)

o /**
* Adds a task to the thread pool.

*

21 * @param task wmutteadnfle function %@géﬁﬁﬁ
to the thread pool -

CUGL Support: ThreadPool

® /**
* Returns a thread pool with the

given number of threads.
*

* @param threads the number of

AssetManager IS a one thread

g pool

statlC SCA: .slldreaqa pLis1NredarooLlL.-

alloc(int threads = 4)

o /**
* Adds a task to the thread pool.

*

22 * Q@param task wuitweadfle function wewigigge.
to the thread pool S

CUGL Asset Management

AssetManager Loader
® Map from keys to assets ® void read(key, src,
e All access is templated cb, async)
® assets- ® Reads asset from file src
>get<Texture>("image ® async indicates if in sep
") thread
® Keys unique per asset ® Callback cb executed when
: done
® Requires attached loaders
® a->attach<T> (loadl- ® void read(json, cb,
>getHook ()) ; async)
® a->attach<kF>(load2- ® \alues key and src now in
>getHook ()) ; Json
* “Hook” is C++ workaround ® As are other special properties

the . e .
gamede51gn1n1t1atlve

23 Oj_d aaaaaaa 11 universit y
- =
| ' ' VR

e For template subclassing “1°P''e Me@or;

CUGL Asset Management

AssetManager Loader

® Map from kevs to assets ® void read(key, src,
e All access i cb, async)
o assets— MRMLEEOISEYE ~ @ Reads asset from file src

>get<Tex ® async indicates ifin sep
) thread

e Keys uniqu e Callback cb executed when
Thread Safe - done

® Requires att

® s->attaciini-iiLuaudl—
>getHook Lo

* a—attad@VETEIIGEL

® void read(json, cb,
async)
® \alues key and src now in
‘ Json

. . : :
* “Hook” is Cr o Svorkaround As are other special properties

24 o For template subclassing M°P'e Mewory;

the . e el .
gamede51gn1mt1atlve

L]
O l d at cornell university
- =
N 1 L] /7 1

CUGL Asset Management

AssetManager Loader
® Map from keys to assets ® void read(key, src,
o All access is templated cb, async)

® Reads asset from file src
® async Indicates if in sep

thread
Each |Oader e Callback cb executed when
T done
1S 1TS OWn task |y
async)
® \alues key and src now in
>geTHOOK ()) ; Json
® “Hook” is C++ workaround ® As are other special properties
2> o For template subclassing M!e M@ § § el

Executing Tasks on the Main Thread

® Any other thread can access the
Application
® Use the static method Application: :get ()
® This class Is essentially a singleton

® That object has a schedule method
® \Works much like addTask In thread pool
® But executes that task on the main thread
® Executed just before the call to your update

£ Sc hedulin g this tas Iﬁuliﬁremg ead safe bamedesigninitiative

lllllllllllllllll

The Schedule Method

/**
* Schedules a task function on

the main thread.
*

* @param cb The task
callback function
* dparam ms The number of

milliseconds to delay
*

* @return a unique identifier for
the task

the . e ee e
27 * / Multithreading gamedesigninitiative

versity

The Schedule Method

/**
* Schedules a task function on
the main thread.

*
= Picks first
HEIEE G
e ms millisec

* (@param c
callback fun
* @param m

milliseconds to deld®
*

Return false to
stop execution

* @return a unique identifier for
the task

the e
28 *« / Multithreading gamede51§cr(}r1$tlat1ye

uuuuuuu ty

Putting it All Together

Game Thread Asset Thread

addTasqug;;

schedulef...

Asset
Manager

Schedules

materializ
e

Application ThreadPool

the
_ _ YN
29 Multithreading B e

Aside: Schedule is Useful in General

30

Can specify an event to run in the future
® This is the purpose of the milliseconds
® May be easier than tracking a timer yourself

Can specify a task to run periodically

® Example: Spawning enemies

® The task returns t rue If it wants to run again

® Same delay is applied as the first time

® Alternate schedule separates delay and period

Multithreading tggeamedesiglninitia’ciye

lllllllllllllllll

Recall: Playing Sound Directly

Write PCM
chunk to buffer

>

PCM data buffer

Sound
Card :>%8

Missing a write causes pops/clicks

31 Multithreading

e —

lllllllllllllllll

The CUGL Approach

32

Game Thread DSP Graph Audio Thread

Application Thread

the . e ee e
Multithreading gamedesigninitiative

The CUGL Approach

Game Thread DSP Graph Audio Thread

% mod1if 1|e S
Update

reads

Application Thread

the
. . medesigninitiati
33 Multithreading Bl verty

The CUGL Approach

Game Thread DSP Graph Audio Thread
v v

modifies

This Is a very complex

Producer/Consumer

Application Thread

the
_ _ YN
34 Multithreading B

Aside: Audio Is Not a ThreadPool

® Audio is adedicated std: :thread

® Because It needs to run as long as the game does
e Started when you initialized AudioEngine

® But process Is similar to ThreadPool
® Package yourtaskasa std::function<void()>
® Pass this when you create the thread object

® Difference Is that task Is in a loop
® Has an attribute called running to manage loop
® \When you setto false, the thread iIs done

e —

35 Multithreading tggeamedesiglninitia’ci\(e

lllllllllllllllll

The CUGL Approach

Game Thread DSP Graph Audio Thread

v v

modifies

-
-
-l

How do we protect

the critical section?

the . e .
Multithreading gamedesigninitiative

The Java Approach: Synchronized

public class CriticalSection {

synchronized void mety

Locked to

L) one thread
at a time
synchronized void method?2 ()
{..}

synchronized void method3 ()

e } the . e el .
i i amed nitiative
3@ M u Itl th re ad In g g e81§{(}r1nell utﬂvelrzilty

The Java Approach: Synchronized

public class CriticalSection {

synchronized void mety

Locked to

= one thread
at a time
. . " _

- synchronilzed void me Lock applies

to all of the

methods

synchronized void method3 ()

3{8 "t } Multithreading ggmedesﬂ%ﬂfj}ﬁﬁﬂg

C++ Actually Has Two Tools

std: :mutex std: :atomic

® Used to protect a code block ® Used to protect a variable

tttttttttttttttt y

® Places lock on code block ® Prevents data races
® Only one thread can access ® Useful for shared setters
® Advantages e Advantages
® Can replicate ® 10x faster than
synchronized std: :mutex
® Relatively easy to use ® Sometimes easy to use
® Disadvantages ® Disadvantages
® | ocking has some cost ® Extremely limited in use
] ® Deadlocks easy if carelesi/I uItithreading. Advanced use is %WV

C++ Actually Has Two Tools

std: :mutex

std: :atomic

® Used to protect a code block

® Places lock on code block
® Only one thread can access

WX\ Audio thread
B uses only when
It must do so

-"-J ---'J - TR g

® Disadvantages
® | ocking has some cost
. ® Deadlocks easy if careless

Multithreading

® Used to protect a variable

® Prevents data races
® Useful for shared setters

i Audio thread

B uses whenever
It IS possible

A A/ = e

® Disadvantages

® Extremely limited in use
® Advanced use is a

gamedesigninitiative
at cornell university

Replicating Synchronized

class CriticalSection {
private:
/** Mutex to synchronize

methods */
std: :mutex mutex;

public:
vold method () {
mutex.lock () ; //

Lock method code

mutex.unlock () ; //

nelease when dovgitreading gamedesigninitiative
1

Obervations About std: :mutex

® |t Is not a reentrant lock (unlike
synchronized)
® | ocking it again inside same class will deadlock
® This matters when you have locks on helpers

® Mustuse std::recursive mutex for
reentrant lock

® Manual lock/unlock calls are frowned upon
® To easy to forget to unlock and deadlock
® Preferred way Is to attach a locking object

wtith

2 - - i L Emedeigpiniian s
® \When locking object 1s deléted, so is lock a

e —

4

Using a Locking Object

class CriticalSection {

private:
/** Mutex to synchronize

methods */
std: :mutex mutex;

public:
vold method () {
std::lock guard<std::mutex>

lock (mutex);

// Mutex unlocked once lock

Ma r j_ ab :l_ c de l e t e ®|u|tithreading gamwesﬂ%ﬁfﬂi?ﬁﬁ?
1

What If Critical Section Is a Variable?

® Example: running attribute controlling

thread

® Audio thread loopsso longasitis true
® Setting It to false stops the audio

Mutexes exist to prevent inconsistent states
® Either all code Is executed, or none is
® Cannot happen to variable assignment, right?

® C++Is not assembly code!

44

® Asingle assignment is multiple lines of assembly
® This Is not thread safe (especially on Windows)

Multithreading tggeamedesiglninitia’ciye

lllllllllllllllll

What If Critical Section Is a Variable?

® Example: running attribute controlling

thread

® Audio thread loopsso long as itis true
® Setting It to false stops the audio

Mutexes This
® Either a

® Cannot happen to variable assignment, right?

leads to data races! ALl

® C++Is not assembly code!

45

® Asingle assignment is multiple lines of assembly
® This Is not thread safe (especially on Windows)

. . the . e .
Multithreading gamedesigninitiative

std::atomic Protects Assignment

® Template around a type:

std: :atomic<int>

® Supports all primitive C++ types

® Cannot apply to objects in general, but ...

® |spossible to make std: :shared ptr atomic

® Supported by two methods

46

® load ():Anatomic getter for the value
® store (value):An atomic setter for the value
® Shared pointers are slightly more complicated —

Multithreading gamedesigninitiative

lllllllllllllllll

std::atomic Protects Assignment

® Template around a type:

® Supported by two mett Means assignment Is

47

std: :atomic<int>
® Supports all primitive C++ types

® Cannot apply to objects in general, but ...

® |s possible to make stdfrhwf\omic

atomic, not methods
® Joad():Anatomic ge

® store (value):An atomic setter for the value
® Shared pointers are slightly more complicated —

Multithreading gamedesigninitiative

lllllllllllllllllll

Only Use If Read/Write Are Separate

class WithAtomics {

private:
std::atomic<int> xvar; //

Atomic 1nteger

public:

/** Change the value of X */
vold writeX(int wval) {
_xvar.store(val); }

/** Use the value of X to compute
something */

vold readX () {
int x = xvar.load(); // Copy
galue to local vagiaple

// Use x 1n local computation

Only Use If Read/Write Are Separate

class WithAtomics {

private:
std::atomic<int> xvar; //

Atomic 1nteger

public:

/** Change the value of X */
vold writeX(int wval) {
_xvar.store(val); }

/** Use the/zilgg\othoSompute
something */ ,

void readX (EAGEEICICEP s
int x = EEEENEENEQGOEEE // Copy

%alue to local v%@ﬁ%mﬁc — y
// Use x in local computation

This Is Only Scratching the Surface

® C++ supports monitors and semaphores

® These are used for producer/consumer problem
® Monitor allows consumer to wait on producer

® C++ supports promises

® These are threads that return a value
® Simplify critical section In that case

® Atomics support memory orders
® These are used to optimize performance
® Best avoided unless you know what you are doing

50 Multithreading tggeameclesiglninitia’ciye

lllllllllllllllll

This Is Only Scratching the Surface

® C++ supports monitors and semaphores

® These are used for producer/consumer problem
® Monitor allows consumer to wait on producer

See readings If want more

® Atomics support memory orders
® These are used to optimize performance
® Best avoided unless you know what you are doing

the
_ _ YN
51 Multithreading B e

So Why Do We Care?

® All of these threads are made for you!

® But how about making your own threads?
® Pathfinding is a classic example
® NPC behavior can also be long-running

® How can extreme can we go?
® \What If all updates are in separate thread?
® Then the main thread just draws!
® This can give us potentially very high FPS

e —

52 Multithreading tggeameclesiglninitia’ciye

lllllllllllllllll

This Will Not Quite Work

1413

Frame 1 Frame 2 Frame 3

Without update, redraw same

Image.
We need animation in the core loop.

e —

53 Multithreading tggeameclesiglninitir;vciye

lllllllllllllllll

Recall: Two Approaches to Animation

Tweening Physics
® Animates timed actions ® Animates physical objects
® Given aduration and a start ® Bodies with force and mass
® [nterpolates scene over time ® Also shape for collisions
® Render thread simply... ® Render thread simply...
® accesses all active actions ® steps simulation forward
® moves them forward by dt ® renders objects at end
® Gameplay creates actions ® Gameplay nudges objects
® Happens less frequently ® Might be less frequent
® Decoupled from render ® |f so, can also decouple

lllllllllllllllll

54 Multithreading tggeameclesiglninitir;vciye

Recall: Two Approaches to Animation

Tweening Physics
® Animates timed actions ® Animates physical objects
® Given aduration and a start ® Bodies with force and mass
® [nterpolates scene over time ® Also shape for collisions

Like networking, animation uses o

dead reckoning when missing input

® Gameplay creates actions ® Gameplay nudges objects
® Happens less frequently ® Might be less frequent
® Decoupled from render ® |f so, can also decouple

the
_ _ YN
55 Multithreading B e

A New Architecture

Animation Thread

Update Tweening

Simulate Physics

56

Game

State

modifi‘e%

Multithreading

Gameplay Thread

Process Input

Process Player Actions
Process NPC Actions
Process Interactions

the . o ey g
gamedesigninitiative

at cornell university

A New Architecture

Animation Thread Gameplay Thread

But don’t want
this slow either!

Update Tweening

Simulate Physics T N —
rocess Inpu

ame Process Player Actions
State Process NPC Actions
Process Interactions

modifi|e%

S

Multithreading

the . o ey g
gamedesigninitiative

at cornell university

Summary

® Games engines are naturally multithreaded
® Offload tasks that block drawing (asset loading)
® Offload tasks that slow drawing (pathfinding)
® Execute tasks decoupled from drawing (audio)

® CUGL has native task-based parallelism
® ThreadPool for tasks off the main thread
® Application::schedule fortasks on main thread

® C++ has general-purpose tools for parallelism
® std::thread class for managing other threads
® std::mutexand std::atomic for critical sections

lllllllllllllllll

58 Multithreading tggeameclesiglninitia’ciye

	Slide 1: Concurrency & Multithreading
	Slide 2: Games are Naturally Multithreaded
	Slide 3: Multithreading in CUGL
	Slide 4: Multithreading in CUGL
	Slide 5: Recall: The Application Thread
	Slide 6: Recall: The AssetManager Thread
	Slide 7: Recall: The AssetManager Thread
	Slide 8: Asset Loading Consists of Tasks
	Slide 9: Ideally, Each One is a Thread
	Slide 10: Ideally, Each One is a Thread
	Slide 11: What is the Problem?
	Slide 12: Solution: Thread Pool
	Slide 13: Solution: Thread Pool
	Slide 14: Solution: Thread Pool
	Slide 15: Solution: Thread Pool
	Slide 16: Solution: Thread Pool
	Slide 17: Solution: Thread Pool
	Slide 18: Solution: Thread Pool
	Slide 19: Solution: Thread Pool
	Slide 20: Solution: Thread Pool
	Slide 21: CUGL Support: ThreadPool
	Slide 22: CUGL Support: ThreadPool
	Slide 23: CUGL Asset Management
	Slide 24: CUGL Asset Management
	Slide 25: CUGL Asset Management
	Slide 26: Executing Tasks on the Main Thread
	Slide 27: The Schedule Method
	Slide 28: The Schedule Method
	Slide 29: Putting it All Together
	Slide 30: Aside: Schedule is Useful in General
	Slide 31: Recall: Playing Sound Directly
	Slide 32: The CUGL Approach
	Slide 33: The CUGL Approach
	Slide 34: The CUGL Approach
	Slide 35: Aside: Audio is Not a ThreadPool
	Slide 36: The CUGL Approach
	Slide 37: The Java Approach: Synchronized
	Slide 38: The Java Approach: Synchronized
	Slide 39: C++ Actually Has Two Tools
	Slide 40: C++ Actually Has Two Tools
	Slide 41: Replicating Synchronized
	Slide 42: Obervations About std::mutex
	Slide 43: Using a Locking Object
	Slide 44: What If Critical Section is a Variable?
	Slide 45: What If Critical Section is a Variable?
	Slide 46: std::atomic Protects Assignment
	Slide 47: std::atomic Protects Assignment
	Slide 48: Only Use If Read/Write Are Separate
	Slide 49: Only Use If Read/Write Are Separate
	Slide 50: This Is Only Scratching the Surface
	Slide 51: This Is Only Scratching the Surface
	Slide 52: So Why Do We Care?
	Slide 53: This Will Not Quite Work
	Slide 54: Recall: Two Approaches to Animation
	Slide 55: Recall: Two Approaches to Animation
	Slide 56: A New Architecture
	Slide 57: A New Architecture
	Slide 58: Summary

