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Games are Naturally Multithreaded

 The core game loop is time constrained

 Frame rate sets a budget of how much you can do

 Exceeding that budget causes frame rate drops

 Sometimes we need an extra thread to …

 Offload tasks that block drawing (asset loading)

 Offload tasks that slow drawing (pathfinding)

 Execute tasks decoupled from drawing (audio)

 Part of architecture spec: computation model

Multithreading2
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Multithreading in CUGL

 CUGL has three primary threads

 The Application, or main graphics thread

 The AssetManager thread, for loading assets

 The AudioEngine thread, for audio playback

 Note that only Application is required

 Also has tools for making your own threads

 Most are built on top of C++ and std::thread

 But there are some unique features too

Multithreading3
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Understanding the three threads

can help us to make our own.
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Cull non-visible objects

Transform visible objects

Draw to backing buffer

Multithreading5 

Recall: The Application Thread

Update

Draw

Display backing buffer

Receive player input

Process player actions

Interactions (e.g. physics)

Process NPC actions60 times/s

=

16.7 ms
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Recall: The AssetManager Thread

Asset 
Manager

Specify Asset

Game Thread Asset Thread

Update

Draw

Notify done

 Works as a dictionary

 Each asset given a key

 Can access asset by key

 But templated by type
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Recall: The AssetManager Thread

Asset 
Manager

Specify Asset

Asset Thread

Update

Draw

Notify done

 Works as a dictionary

 Each asset given a key

 Can access asset by key

 But templated by type

Game Thread
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Asset Loading Consists of Tasks

Load Font
"Times.t

tf"

Load Image
"smile.p

ng"

Load Widget
"menu.js

on"

Load Sound
"music.o

gg"

Task 1 Task 2 Task 3 Task 4
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Ideally, Each One is a Thread

Load Font
"Times.t

tf"

Load Image
"smile.p

ng"

Load Widget
"menu.js

on"

Load Sound
"music.o

gg"

Task 1 Task 2 Task 3 Task 4

Thread 1 Thread 2 Thread 3 Thread 4
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Ideally, Each One is a Thread

Load Font
"Times.t

tf"

Load Image
"smile.p

ng"

Load Widget
"menu.js

on"

Load Sound
"music.o

gg"

Task 1 Task 2 Task 3 Task 4

Thread 1 Thread 2 Thread 3 Thread 4

But We Cannot Do This
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What is the Problem?

 Some tasks have shared resources

 Example: Fonts all use same engine to make atlases

 Cannot execute without protecting critical section

 Typically easier to just not do them concurrently

 Some tasks have dependencies

 Example: Widgets must come after images, fonts

 Forces an order on the asset loading

 What we want is a task service manager

 Executes given tasks in a partial order

Multithreading11



gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading12

 Threads + scheduler

 Scheduler puts tasks thread

 Uses first available thread

 Holds tasks if all busy

Scheduler

Task 1

Task 2

Task 3

Task 4
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Solution: Thread Pool
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Scheduler

Task 1

Task 2

Task 3

Task 4
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Solution: Thread Pool
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Scheduler

Task 2

Task 3

Task 4

Task 1
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Solution: Thread Pool
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Scheduler

Task 3

Task 4
Task 1 Task 2
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Solution: Thread Pool

Multithreading16

Scheduler

Task 4

Task 1 Task 2 Task 3
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Solution: Thread Pool
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Scheduler

Task 1 Task 2 Task 3 Task 4
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Solution: Thread Pool
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Scheduler

Task 5

Task 1 Task 2 Task 3 Task 4
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Solution: Thread Pool
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Scheduler

Task 5

Task 1 Task 3 Task 4
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Solution: Thread Pool

Multithreading20

Scheduler

Task 1 Task 5 Task 3 Task 4
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CUGL Support: ThreadPool

 /**
  * Returns a thread pool with the 
given number of threads.
  *
 * @param threads  the number of 
threads in this pool
 *
* @return a thread pool with the 

given number of threads.
  */
static std::shared_ptr<ThreadPool> 
alloc(int threads = 4)

 /**
 * Adds a task to the thread pool.
 *
* @param  task   the function to add 
to the thread pool
*/

Multithreading21
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 /**
  * Returns a thread pool with the 
given number of threads.
  *
 * @param threads  the number of 
threads in this pool
 *
* @return a thread pool with the 

given number of threads.
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AssetManager is a one thread 

pool
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AssetManager

 Map from keys to assets

 All access is templated

 assets-

>get<Texture>("image

")

 Keys unique per asset

 Requires attached loaders

 a->attach<T>(load1-

>getHook());

 a->attach<F>(load2-

>getHook());

 “Hook” is C++ workaround

 For template subclassing

 Make custom loaders easier

CUGL Asset Management

Loader

 void read(key, src, 

cb, async)

 Reads asset from file src

 async indicates if in sep 
thread

 Callback cb executed when 
done

 void read(json, cb, 

async)

 Values key and src now in 
json

 As are other special properties

 void 

materialize(key, 

Mobile Memory23
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Thread Safe

Main Thread 

Only

Thread Safe

Mobile Memory24
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Mobile Memory25

Each loader

is its own task
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Executing Tasks on the Main Thread

 Any other thread can access the 

Application

 Use the static method Application::get()

 This class is essentially a singleton

 That object has a schedule method

 Works much like addTask in thread pool

 But executes that task on the main thread

 Executed just before the call to your update

 Scheduling this task is thread safeMultithreading26
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The Schedule Method

/**

 * Schedules a task function on 

the main thread.

*

 * @param cb      The task 

callback function

* @param ms   The number of 

milliseconds to delay

*

* @return a unique identifier for 

the task

 */

Uint32 

Multithreading27
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The Schedule Method

/**

 * Schedules a task function on 

the main thread.

*

 * @param cb      The task 

callback function

* @param ms   The number of 

milliseconds to delay

*

* @return a unique identifier for 

the task

 */

Uint32 

Multithreading28

Picks first 

frame after 

ms millisec

Return false to 

stop execution
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Putting it All Together

Asset 
Manager

addTask(...)

Game Thread Asset Thread

Update

Draw

schedule(…)

Application ThreadPool

Schedules
materializ

e

Multithreading29
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Aside: Schedule is Useful in General

 Can specify an event to run in the future

 This is the purpose of the milliseconds

 May be easier than tracking a timer yourself

 Can specify a task to run periodically

 Example: Spawning enemies

 The task returns true if it wants to run again

 Same delay is applied as the first time

 Alternate schedule separates delay and period

Multithreading30
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Recall: Playing Sound Directly

Multithreading

Sound 

Card

Game

Loop

Write PCM 

chunk to buffer
PCM data buffer

31

Missing a write causes pops/clicks
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The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading32

DSP Graph

Application Thread
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The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading33

DSP Graph

Application Thread

modifies

reads
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The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading34

DSP Graph

Application Thread

modifies

reads

This is a very complex

Producer/Consumer
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Aside: Audio is Not a ThreadPool

 Audio is a dedicated std::thread

 Because it needs to run as long as the game does

 Started when you initialized AudioEngine

 But process is similar to ThreadPool 

 Package your task as a std::function<void()>

 Pass this when you create the thread object

 Difference is that task is in a loop

 Has an attribute called running to manage loop

 When you set to false, the thread is done

Multithreading35
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The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading36

DSP Graph

Application Thread

modifies

reads

How do we protect

the critical section?
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The Java Approach: Synchronized

public class CriticalSection {

    synchronized void method1() 

{…}

    synchronized void method2() 

{…}

    synchronized void method3() 

{…}

}

Multithreading37

Locked to 

one thread

at a time
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The Java Approach: Synchronized

public class CriticalSection {

    synchronized void method1() 

{…}

    synchronized void method2() 

{…}

    synchronized void method3() 

{…}

}

Multithreading38

Locked to 

one thread

at a time

Lock applies 

to all of the 

methods
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std::mutex

 Used to protect a code block

 Places lock on code block

 Only one thread can access

 Advantages

 Can replicate 

synchronized

 Relatively easy to use

 Disadvantages

 Locking has some cost

 Deadlocks easy if careless
Multithreading39

C++ Actually Has Two Tools

std::atomic

 Used to protect a variable

 Prevents data races

 Useful for shared setters

 Advantages

 10x faster than 

std::mutex

 Sometimes easy to use

 Disadvantages

 Extremely limited in use

 Advanced use is advanced
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std::mutex

 Used to protect a code block

 Places lock on code block

 Only one thread can access

 Advantages

 Can replicate 

synchronized

 Relatively easy to use

 Disadvantages
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C++ Actually Has Two Tools

std::atomic

 Used to protect a variable

 Prevents data races

 Useful for shared setters

 Advantages

 10x faster than 

std::mutex

 Sometimes easy to use

 Disadvantages

 Extremely limited in use

 Advanced use is advanced

Audio thread 

uses whenever 

it is possible

Audio thread 

uses only when 

it must do so
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Replicating Synchronized

class CriticalSection {

private:

     /** Mutex to synchronize 

methods */

    std::mutex _mutex;

public:

    void method() {

        _mutex.lock();        // 

Lock method code

        …

        _mutex.unlock();    // 

Release when done

    }

}

Multithreading41
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Obervations About std::mutex

 It is not a reentrant lock (unlike 

synchronized)

 Locking it again inside same class will deadlock

 This matters when you have locks on helpers

 Must use std::recursive_mutex for 

reentrant lock

 Manual lock/unlock calls are frowned upon

 To easy to forget to unlock and deadlock

 Preferred way is to attach a locking object

 When locking object is deleted, so is lock
Multithreading42
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Using a Locking Object

class CriticalSection {

private:

     /** Mutex to synchronize 

methods */

    std::mutex _mutex;

public:

    void method() {

        std::lock_guard<std::mutex> 

lock(_mutex);

        …

        // Mutex unlocked once lock 

variable deleted

    }

}

Multithreading43
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What If Critical Section is a Variable?

 Example: running attribute controlling 
thread
 Audio thread loops so long as it is true

 Setting it to false stops the audio

 Mutexes exist to prevent inconsistent states

 Either all code is executed, or none is

 Cannot happen to variable assignment, right?

 C++ is not assembly code!

 A single assignment is multiple lines of assembly

 This is not thread safe (especially on Windows)
Multithreading44
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This leads to data races!
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std::atomic Protects Assignment

 Template around a type: 

std::atomic<int>

 Supports all primitive C++ types

 Cannot apply to objects in general, but …

 Is possible to make std::shared_ptr atomic

 Supported by two methods

 load(): An atomic getter for the value

 store(value): An atomic setter for the value

 Shared pointers are slightly more complicated
Multithreading46
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std::atomic Protects Assignment

 Template around a type: 

std::atomic<int>

 Supports all primitive C++ types

 Cannot apply to objects in general, but …

 Is possible to make std::shared_ptr atomic

 Supported by two methods

 load(): An atomic getter for the value

 store(value): An atomic setter for the value

 Shared pointers are slightly more complicated
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Means assignment is 

atomic, not methods
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Only Use If Read/Write Are Separate

class WithAtomics {

private:

     std::atomic<int> _xvar;   // 

Atomic integer

public:

    /** Change the value of X */

    void writeX(int val) { 

_xvar.store(val); }

    /** Use the value of X to compute 

something */

    void readX() {

        int x = _xvar.load();  // Copy 

value to local variable

        // Use x in local computation

    }

Multithreading48
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    /** Use the value of X to compute 

something */

    void readX() {

        int x = _xvar.load();  // Copy 

value to local variable
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Never store _xvar 

in same method
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This Is Only Scratching the Surface

 C++ supports monitors and semaphores

 These are used for producer/consumer problem

 Monitor allows consumer to wait on producer

 C++ supports promises

 These are threads that return a value

 Simplify critical section in that case

 Atomics support memory orders

 These are used to optimize performance

 Best avoided unless you know what you are doing

Multithreading50
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See readings if want more
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So Why Do We Care?

 All of these threads are made for you!

 But how about making your own threads?

 Pathfinding is a classic example

 NPC behavior can also be long-running

 How can extreme can we go?

 What if all updates are in separate thread?

 Then the main thread just draws! 

 This can give us potentially very high FPS

Multithreading52
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This Will Not Quite Work

Multithreading53

Frame 1 Frame 2 Frame 3

Without update, redraw same 

image.

We need animation in the core loop.
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Tweening

 Animates timed actions

 Given a duration and a start

 Interpolates scene over time

 Render thread simply…

 accesses all active actions 

 moves them forward by dt

 Gameplay creates actions

 Happens less frequently

 Decoupled from render

Multithreading54

Recall: Two Approaches to Animation

Physics

 Animates physical objects

 Bodies with force and mass

 Also shape for collisions

 Render thread simply…

 steps simulation forward

 renders objects at end

 Gameplay nudges objects

 Might be less frequent

 If so, can also decouple
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Tweening

 Animates timed actions

 Given a duration and a start

 Interpolates scene over time

 Render thread simply…

 accesses all active actions 

 moves them forward by dt

 Gameplay creates actions

 Happens less frequently

 Decoupled from render
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Recall: Two Approaches to Animation

Physics

 Animates physical objects

 Bodies with force and mass

 Also shape for collisions

 Render thread simply…

 steps simulation forward

 renders objects at end

 Gameplay nudges objects

 Might be less frequent

 If so, can also decouple

Like networking, animation uses

dead reckoning when missing input
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A New Architecture

Update Tweening

Simulate Physics

Draw

Process Input

Process Player Actions

Process NPC Actions

Process Interactions

Game

State

Animation Thread Gameplay Thread

reads

modifies
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A New Architecture

Update Tweening

Simulate Physics

Draw

Process Input

Process Player Actions

Process NPC Actions

Process Interactions

Game

State

Animation Thread Gameplay Thread

reads

modifies

But don’t want 

this slow either!
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Summary

 Games engines are naturally multithreaded

 Offload tasks that block drawing (asset loading)

 Offload tasks that slow drawing (pathfinding)

 Execute tasks decoupled from drawing (audio)

 CUGL has native task-based parallelism

 ThreadPool for tasks off the main thread

 Application::schedule for tasks on main thread

 C++ has general-purpose tools for parallelism

 std::thread class for managing other threads

 std::mutex and std::atomic for critical sections

Multithreading58
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