the

gamedesigninitiative
at cornell university
I
Lecture 5

Game Architecture
Revisited

Recall: The Game Loop

Receive player input
Process player actions
Process NPC actions

60 times/s

Interactions (e.g. physics)

16.7 ms Cull non-visible objects
Transform visible objects

Draw to backing buffer

Display backing buffer

Game Loop tghfamedesigninitiative

at cornell university

Recall: The Game Loop

Receive player input

Process player actions
Process NPC actions
Interactions (e.g. physics)

® Almost everything is in loop
® Except asynchronous actions

® [s enough for simple games

® How do we organize this loop?
® Do not want spaghetti code

® Distribute over programmers

Game Loop tghearnedesigninitiative

at cornell university

Model-View-Controller Pattern

Controller Calls the
* Updates model in methods of
response to events
/ ®* Updates view with
model changes
Model —
Defines/manages

the program data = <-----=---ocemo—-

Responds to the
controller requests

the . e e .
Architecture Revisited gamedes igninitiative

The Game Loop and MVC

® Model: The game state

® Value of game resources

® [.ocation of game objects

® View: The draw phase
® Rendering commands only
® Major computation in update

® Controller: The update phase

® Alters the game state
® Vast majority of your code

the . e e .
5 Architecture Revisited gamedemﬁ%ﬂfﬂtﬁﬁﬁ

- =

[EE— EE——

Structure of a CUGL Application

}

the . e el .
6 Architecture Revisited 8amede51§c{}r1$tﬁtelr¥§

- =

Structure of a CUGL Application

& Shut Down

Initialization]

cornell university

the . e el .
7 Architecture Revisited 8amede51§mmtlat“.’e

Structure of a CUGL Application

Dormant I
~
~
N

~

}

the . « ege g
8 Architecture Revisited gamedesigninitiative

- =

Structure of a CUGL Application

[Controllw

| View I

the . « ege g
9 Architecture Revisited gamedesigninitiative

- =

The Application Class

onStartup()

update()

® Handles the game assets

® Attaches the asset loaders

® | oads immediate assets

® (alled each animation frame

® Manages gameplay

® Starts any global singletons o

® Example: AudioEngine

® (Creates any player modes

10

® But does not launch yer

® Waits for assets to load o

® [.ike GDXRoot in 3152

Architecture Revisited

Converts input to actions
Processes NPC behavior
Resolves physics

Resolves other interactions

® Updates the scene graph

Transforms nodes
Enables/disables nodes

the . o ege g
gamedesigninitiative
at cornell university

The Application Class

onStartup()

update()

® Handles the game assets

® Attaches the asset loaders

® | oads immediate assets

~praycr modes
® But does not launch yer

® Waits for assets to load
® [.ike GDXRoot in 3152

the . o ege g
11 Architecture Revisited gamedesigninitiative

® (alled each animation frame

® Manages gameplay

Does not draw'
Handled separately

er interactions

® Updates the scene graph
® Transforms nodes

® FEnables/disables nodes

niversity

Problems With the Game Loop

® 16.7 ms not guaranteed!

® Even for optimized code
® Result of external factors

60 times/s

® Regularly see minor jitter

16.7 ms

® “In-between’ code
® Potential Vsync delay

® Occasional major jitter

® Dynamic library loading
® Cost of debugging tools

the . e ege 4.
12 Game Loop gamedesigninitiative

- =

Problems With the Game Loop

® 16.7 ms not guaranteed!

® Even for optimized code

60 times/s

‘ _ ® (Occasional major jitter

® Dynamic library loading

® Cost of debugging tools

the . e ege e
13 Game Loop gamedesigninitiative

Physics and Non-Determinism

14

the . N .
Architecture Revisited gamedesigninitiative

at cornell university

How To Guarantee Determinism??

® Need to decouple simulation from other code

® (Cannot be delayed by drawing
® (Cannot be affected by OS externalities

® Put this on a separate thread?
® Thread management still has some overhead

® Have to synchronize with input/drawing thread (bad!)

® (Create a separate logical loop?
® Simulation loop runs at its own fixed rate

® Draw method simply draws what 1t has so far

the . P .
15 Architecture Revisited 8amede$§{§iﬂ}tﬁi¥§

The Game Loop Revisited

16

Receive player input
preUpdate Process player actions
Process NPC actions

fixedUpdate Interactions (e.g. physics)

postUpdate

the e
Game Loop gamede51§nm1t1at1ve

cornell university

The Game Loop Revisited

/‘

Receive player input
preUpdate Process player actions
Process NPC actions

fixedUpdate Interactions (e.g. physics)

\ called only when step

postUpdate seconds have passed

dt<

SCCS

Game Loop tghearnedesigninitiative

at cornell university

These Are All Possible

preUpdate
postUpdate

18

preUpdate

fixedUpdate

postUpdate

Game Loop

preUpdate
fixedUpdate
postUpdate

Problem: Jerky Motion

Each Image 1s a result of fixedUpdate

Draw Draw

Draw Draw Draw
Draw

Draw

Draw

the . e e .
19 Architecture Revisited gamedesﬂgﬂfﬂtﬁﬂﬁ

The Game Loop Revisited

20

left
over

preUpdate

postUpdate

Game Loop

Receive player input

Process player actions
Process NPC actions

Interactions (e.g. physics)

Interpolate drawing position

the . e ey g
gamedesigninitiative

at cornell university

CUGL Supports Both Loops

preUpdate

fixedUpdate

postUpdate

setDeterministic(false) setDeterministic(true)

at cornell university

the . e el .
21 Architecture Revisited gamedesigninitiative

Scene Structure

Scene
Controller
[Ownership
Subcontroller ‘ Subcontroller \

Collaboration]

the . e el .
22 Architecture Revisited gamedesigninitiative

at cornell university

Scene Structure

Scene ® (Collaboration
Controller

. ® Must import class/interface
Ownership

® [nstantiates an object OR
® (alls the objects methods

Subcontroller ‘ Subcontroll ¢ Ownershlp

® [nstantiated the object

® Responsible for disposal

® Superset of collaboration

-

Collaboration

./

23 Architecture Revisited gamedesigninitiative

at cornell university

Avoid Cyclic Collaboration

Controller

collaborates with

collaborates
with

collaborates with

cornell university

. .. the . e
24 Architecture Revisited gamedesigninitiative

Scene Structure

Scene
Controller

Subcontroller ‘ Subcontroller \

at cornell university

the . e el .
25 Architecture Revisited gamedesigninitiative

CUGL Views: Scene Graphs

Architecture Revisited gamedeﬂgnml}tﬁlrzg
I

CUGL Views: Scene Graphs

Architecture Revisited gamedeﬂgnml}tﬁlrzg
I

CUGL Views: Scene Graphs

Architecture Revisited gamedes gninitiati oy

- =

Model-Controller Separation (Standard)

Model Controller
® Store/retrieve object data ® Process user input
® Limit access (getter/setter) ® Determine action for input
® Preserve any invariants ® Example: mouse, gamepad
® Only affects this object ® (all action in the model

® Implements object logic

29

® (Complex actions on model .
P Traditional controllers

® May affect multiple models 1 1 e
4 — are “lightweight

® Example: attack, collide

the . P .
Architecture Revisited 8amede$§{§iﬂ}tﬁi¥§

Classic Software Problem: Extensibility

® Given: Class with some base functionality
® Might be provided in the language API
® Might be provided in 3™ party software

® Goal: Object with additional functionality
® (lassic solution 1s to subclass original class first

® Example: Extending GUI widgets (e.g. Swing)

® But subclassing does not always work...

® How do you extend a Singleton object?

[EE— EE——

. L. the . e ege e
30 Architecture Revisited gamedesigninitiative

11111111111111111111

Problem with Subclassing

® (Games have lots of classes
® FEach game entity is different

® Needs its own functionality
(e.g. object methods)

® Want to avoid redundancies

® Makes code hard to change

® Common source of bugs Human § Human Orc Orc
Warrior Archer Warrior Archer
A A

® Might be tempted to subclass

® Common behavior in parents

® Specific behavior in children

31 Architecture Revisited

\

Redundant Behavior

the . o e g
gamedesigninitiative
at cornell university

Problem with Subclassing

® (Games have lots of classes
® FEach game entity is different

® Needs its own functionality
(e.g. object methods)

. . Warrior
® Want to avoid redundancies

® Makes code hard to change

® Common source of bugs Human Orc Human Orc
Warrior Warrior Archer Archer
A A

® Might be tempted to subclass

® Common behavior in parents

® Specific behavior in children

32 Architecture Revisited

\

Redundant Behavior

the . o e g
gamedesigninitiative
at cornell university

Model-Controller Separation (Standard)

Model

® Store/retrieve object data

® Limit access (getter/setter)

® Preserve any invariants

® Only affects this object

(Implements object logic \ Human [Human Orc Orc
Warrior Archer Warrior Archer

® Complex actions on model

® May affect multiple models

e Example: attack, collide P Redundant Behavior

the . e e .
33 Architecture Revisited gamedeSla%fEﬁtfvzﬁ(f

Model-Controller Separation (Alternate)

Model Controller
® Store/retrieve object data ® Process game actions
® Limit access (getter/setter) ® Determine from input or Al
® Preserve any invariants ® Find all objects effected
® Only affects this object ® Apply action to objects
® Process interactions
. o
In this cas e, Mo dels Look at current game state
are li ghtwei ght ® Look for “triggering” event

® Apply interaction outcome

the . e ege e
34 Architecture Revisited gamedesigninitiative

Model-Controller Separation (Alternate)

Model Controller

® Store/retrieve object data ® Process game actions
® Limit access (getter/setter) ® Determine from input or Al

® Pr cted
. Motivation for the

Entity-Component Model

v salne state

B A /UUVUIN Al vull vill

In this case, models
are lightweight ® Look for “triggering” event

® Apply interaction outcome

35 Architecture Revisited gamedeﬂgmr}mat}‘,’e

11111111111111111111

Does Not Completely Solve Problem

36

® (Code correctness a concern

Methods have specifications

Must use according to spec

® Check correctness via typing

Find methods in object class
Example: orc.flee()
Check type of parameters

Example: force_to_flee(ore)

® Logical association with type

® Even if not part of class

Architecture Revisited

the . o e g
gamedesigninitiative
at cornell university

Issues with the OO Paradigm

® (Object-oriented programming is very noun-centric
® All code must be organized into classes

® Polymorphism determines capability via type

® OO became popular with traditional MV C pattern
® Widget libraries are nouns implementing view
® Data structures (e.g. CS 2110) are all nouns

® (Controllers are not necessarily nouns, but lightweight

® Games, interactive media break this paradigm
® View i1s animation (process) oriented, not widget oriented

® Actions/capabilities only loosely connected to entities

37 Architecture Revisited gamedeﬂgmr}mat}‘,’e

11111111111111111111

Programming and Parts of Speech

Classes/Types are Nouns Actions are Verbs

® Methods have verb names ® (apability of a game object

® Method calls are sentences ® (Often just a simple function
® subject.verb(object) ® damage(object)
® gsubject.verb() ® collide(object1,object])

® (lasses related by is-a ® Relates to objects via can-it
® Indicates class a subclass of ® Example: Orc can-it attack
® Example: String is-a Object ® Not necessarily tied to class

| | . : L
® Objects are class instances Example: swapping items

the . P .
38 Architecture Revisited gamedesﬂ%{;;f;}t;itﬁf

Duck Typing: Reaction to This Issue

e “Type” determined by its Java:

® Names of its methods public boolean equals(Object h) {

: : if (I(h instanceof Person
® Names of its properties ((2

® [fit “quacks like a duck™

return false;}
Person ob= (Person)h;

return name.equals(ob.name);

® Python has this capability

. : }
® hasattr(<object>,<string>)
® True if object has attribute Python:
or method of that name def __eq_(self,ob):
if (not (hasattr(ob, name’))
® This has many problems - return False
® Correctness is a nightmare return (self.name == ob.name)

the . P .
39 Architecture Revisited 8amede$§{§iﬂ}tﬁi¥§

Duck Typing: Reaction to This Issue

® “Type” determined by its Java:

® Names of its methods public boolean equals(Object h) {

: : if (I(h instanceof Person
® Names of its properties ((D

. return false; }
® [fit “quacks

like a duck” . v m

s2son)h;

‘ob.name);

o hasattr(Similar to C++ templates

® True if ob)¥

or method of that name def __eq_(self,ob):
if (not (hasattr(ob, name’))
® ThlS haS many pl’OblemS ‘ return False
® Correctness is a nightmare return (self.name == ob.name)

40 Architecture Revisited gamedesigninitiative

at cornell university

Duck Typing: Reaction to This Issue

® “Type” determined by its Java:
® Names of its methods public boolean equals(Object h) {
e Names| ® What do we really want? frsom) |
o [fit“ql ® Capabilities over properties h
* Python hi ® Extend capabilities without [(ob.name):
o hasattrl necessarily changing type
o Trueif|] @ Without using new languages
ormeth o Aoqin, use software patterns e
® This has TTANy PTODICITS " Teturn False
® Correctness is a nightmare return (self.name == ob.name)

41 Architecture Revisited

the . o ege g
gamedesigninitiative
at cornell university

Possible Solution; Decorator Pattern

Decorator . Originall. Original
Obj ect unctionality Obj ect

42

the . e el .
Architecture Revisited gamed%la%grlnl}tlatlve

nell university

Java |/O Example

InputStream input = System.in;
mconsole mput }

Reader reader = new InputStreamReader(input);

maers easy to read }

BufferedReader buffer = new BufferedReader(reader);

mle line at a time }
Most of java.io

works this way

. L. the . e ege e
43 Architecture Revisited gamedesigninitiative

11111111111111111111

Alternate Solution: Delegation Pattern

Original Reference to > Delegate
Object (KRG Object 1

Forward
Request

Inversion of the Decorator Pattern |

[EE— —

the . e ey g
44 Architecture Revisited gamedesigninitiative

ell university
s

Alternate Solution: Delegation Pattern

Original Reference to > Delegate
Object (KRG Object 2

Forward
Request

Inversion of the Decorator Pattern

[EE— —

the . e ey g
45 Architecture Revisited gamedesigninitiative

- ===

Example: Sort Algorithms

public class SortableArray extends ArrayList {

private Sorter sorter = new-ierge (); new QuickSorterQ;

public void setSorter(Sorter s) { sorter =s; }

public void sort() {

Object[] list = toArray(); public interface Sorter {
sorter.sort(list); public void sort(Object[] list);
clear(); }

for (o:list) { add(o); }

the . o ege g
46 Architecture Revisited gamedesigninitiative

Comparison of Approaches

Decoration Delegation

® Pattern applies to decorator ~ ® Applies to original object

® (Given the original object ® You designed object class
® Requests through decorator ® All requests through object
® Monolithic solution ® Modular solution
® Decorator has all methods ® Each method can have own
® “Layer” for more methods delegate implementation
(e.g. Java I/O classes) ® Like higher-order functions
® Works on any object/class ® Limited to classes you make

the . e ege e
47 Architecture Revisited gamedesigninitiative

The Subclass Problem Revisited

Delegates?

Orc

Human

Warrior

Human Human Orc Orc
Warrior Archer Warrior Archer
A A

Y

Redundant Behavior

at cornell university

the . e el .
48 Architecture Revisited gamedesigninitiative

Summary

® Games naturally fit a specialized MV C pattern
® Want lightweight models (mainly for serialization)
® Want heavyweight controllers for the game loop

® View is specialized rendering with few widgets
® CUGL view 1s handled 1n scene graphs

® Proper design leads to unusual OO patterns
® Subclass hierarchies are unmanageable

® Component-based design better models actions

. L. the . e ege e
49 Architecture Revisited gamedesigninitiative

1111111 ell university
e

