
gamedesigninitiative
at cornell university

the

Concurrency &
Multithreading

Lecture 13

gamedesigninitiative
at cornell university

the

Games are Naturally Multithreaded

� The core game loop is time constrained
� Frame rate sets a budget of how much you can do
� Exceeding that budget causes frame rate drops

� Sometimes we need an extra thread to …
� Offload tasks that block drawing (asset loading)
� Offload tasks that slow drawing (pathfinding)
� Execute tasks decoupled from drawing (audio)

� Part of architecture spec: computation model
Multithreading2

gamedesigninitiative
at cornell university

the

Multithreading in CUGL

� CUGL has three primary threads
� The Application, or main graphics thread
� The AssetManager thread, for loading assets
� The AudioEngine thread, for audio playback
� Note that only Application is required

� Also has tools for making your own threads
� Most are built on top of C++ and std::thread
� But there are some unique features too

Multithreading3

gamedesigninitiative
at cornell university

the

Multithreading in CUGL

� CUGL has three primary threads
� The Application, or main graphics thread
� The AssetManager thread, for loading assets
� The AudioEngine thread, for audio playback
� Note that only Application is required

� Also has tools for making your own threads
� Most are built on top of C++ and std::thread
� But there are some unique features too

Multithreading4

Understanding the three threads
can help us to make our own.

gamedesigninitiative
at cornell university

the

Cull non-visible objects
Transform visible objects
Draw to backing buffer

Multithreading5

Recall: The Application Thread

Update

Draw

Display backing buffer

Receive player input
Process player actions

Interactions (e.g. physics)
Process NPC actions60 times/s

=
16.7 ms

gamedesigninitiative
at cornell university

the

Multithreading6

Recall: The AssetManager Thread

Asset
Manager

Specify Asset

Game Thread Asset Thread

Update

Draw

Notify done

� Works as a dictionary
� Each asset given a key
� Can access asset by key
� But templated by type

gamedesigninitiative
at cornell university

the

Multithreading7

Recall: The AssetManager Thread

Asset
Manager

Specify Asset

Asset Thread

Update

Draw

Notify done

� Works as a dictionary
� Each asset given a key
� Can access asset by key
� But templated by type

Exactly how does this work?

Game Thread

gamedesigninitiative
at cornell university

the

Multithreading8

Asset Loading Consists of Tasks

Load Font
"Times.ttf"

Load Image
"smile.png"

Load Widget
"menu.json"

Load Sound
"music.ogg"

Task 1 Task 2 Task 3 Task 4

gamedesigninitiative
at cornell university

the

Multithreading9

Ideally, Each One is a Thread

Load Font
"Times.ttf"

Load Image
"smile.png"

Load Widget
"menu.json"

Load Sound
"music.ogg"

Task 1 Task 2 Task 3 Task 4

Thread 1 Thread 2 Thread 3 Thread 4

gamedesigninitiative
at cornell university

the

Multithreading10

Ideally, Each One is a Thread

Load Font
"Times.ttf"

Load Image
"smile.png"

Load Widget
"menu.json"

Load Sound
"music.ogg"

Task 1 Task 2 Task 3 Task 4

Thread 1 Thread 2 Thread 3 Thread 4

But We Cannot Do This

gamedesigninitiative
at cornell university

the

What is the Problem?

� Some tasks have shared resources
� Example: Fonts all use same engine to make atlases
� Cannot execute without protecting critical section
� Typically easier to just not do them concurrently

� Some tasks have dependencies
� Example: Widgets must come after images, fonts
� Forces an order on the asset loading

� What we want is a task service manager
� Executes given tasks in a partial order

Multithreading11

gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading12

� Threads + scheduler

� Scheduler puts tasks thread

� Uses first available thread

� Holds tasks if all busy

Scheduler

Task 1

Task 2

Task 3

Task 4

gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading13

Scheduler

Task 1

Task 2

Task 3

Task 4

gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading14

Scheduler

Task 2

Task 3

Task 4

Task 1

gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading15

Scheduler

Task 3

Task 4
Task 1 Task 2

gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading16

Scheduler

Task 4
Task 1 Task 2 Task 3

gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading17

Scheduler

Task 1 Task 2 Task 3 Task 4

gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading18

Scheduler

Task 5
Task 1 Task 2 Task 3 Task 4

gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading19

Scheduler

Task 5
Task 1 Task 3 Task 4

gamedesigninitiative
at cornell university

the

Solution: Thread Pool

Multithreading20

Scheduler

Task 1 Task 5 Task 3 Task 4

gamedesigninitiative
at cornell university

the

CUGL Support: ThreadPool
� /**

 * Returns a thread pool with the given number of threads.
 *
 * @param threads the number of threads in this pool
 *
* @return a thread pool with the given number of threads.

 */
static std::shared_ptr<ThreadPool> alloc(int threads = 4)

� /**
 * Adds a task to the thread pool.
 *
* @param task the function to add to the thread pool
*/
void addTask(const std::function<void()> &task)

Multithreading21

gamedesigninitiative
at cornell university

the

CUGL Support: ThreadPool
� /**

 * Returns a thread pool with the given number of threads.
 *
 * @param threads the number of threads in this pool
 *
* @return a thread pool with the given number of threads.

 */
static std::shared_ptr<ThreadPool> alloc(int threads = 4)

� /**
 * Adds a task to the thread pool.
 *
* @param task the function to add to the thread pool
*/
void addTask(const std::function<void()> &task)

Multithreading22

AssetManager is a one thread pool

gamedesigninitiative
at cornell university

the

� void read(key, src, cb, async)
� Reads asset from file src
� async indicates if in sep thread
� Callback cb executed when done

� void read(json, cb, async)
� Values key and src now in json
� As are other special properties

� void materialize(key, asset, cb)
� Code to “finish” asset
� Always in the main thread

Multithreading23

Recall: Custom Loaders

Thread Safe

Main Thread
Only

Thread Safe

gamedesigninitiative
at cornell university

the

� void read(key, src, cb, async)
� Reads asset from file src
� async indicates if in sep thread
� Callback cb executed when done

� void read(json, cb, async)
� Values key and src now in json
� As are other special properties

� void materialize(key, asset, cb)
� Code to “finish” asset
� Always in the main thread

Multithreading24

Recall: Custom Loaders

Each of these
is its own task

gamedesigninitiative
at cornell university

the

Executing Tasks on the Main Thread

� Any other thread can access the Application
� Use the static method Application::get()
� This class is essentially a singleton

� That object has a schedule method
� Works much like addTask in thread pool
� But executes that task on the main thread
� Executed just before the call to your update

� Scheduling this task is thread safe
Multithreading25

gamedesigninitiative
at cornell university

the

The Schedule Method

/**
 * Schedules a task function on the main thread.
*
 * @param cb The task callback function
* @param ms The number of milliseconds to delay
*
* @return a unique identifier for the task

 */
Uint32 schedule(std::function<bool()> cb, Uint32 ms)

Multithreading26

gamedesigninitiative
at cornell university

the

The Schedule Method

/**
 * Schedules a task function on the main thread.
*
 * @param cb The task callback function
* @param ms The number of milliseconds to delay
*
* @return a unique identifier for the task

 */
Uint32 schedule(std::function<bool()> cb, Uint32 ms)

Multithreading27

Picks first
frame after
ms millisec

Return false to
stop execution

gamedesigninitiative
at cornell university

the

Putting it All Together

Asset
Manager

addTask(...)
Game Thread Asset Thread

Update

Draw

schedule(…)

Application ThreadPool

Schedules
materialize

Multithreading28

gamedesigninitiative
at cornell university

the

Aside: Schedule is Useful in General

� Can specify an event to run in the future
� This is the purpose of the milliseconds
� May be easier than tracking a timer yourself

� Can specify a task to run periodically
� Example: Spawning enemies
� The task returns true if it wants to run again
� Same delay is applied as the first time
� Alternate schedule separates delay and period

Multithreading29

gamedesigninitiative
at cornell university

the

Recall: Playing Sound Directly

Multithreading

Sound
Card

Game
Loop

Write PCM
chunk to buffer

PCM data buffer

30

Missing a write causes pops/clicks

gamedesigninitiative
at cornell university

the

The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading31

DSP Graph

Application Thread

gamedesigninitiative
at cornell university

the

The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading32

DSP Graph

Application Thread

modifies

reads

gamedesigninitiative
at cornell university

the

The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading33

DSP Graph

Application Thread

modifies

reads

This is a very complex
Producer/Consumer

gamedesigninitiative
at cornell university

the

Aside: Audio is Not a ThreadPool

� Audio is a dedicated std::thread
� Because it needs to run as long as the game does
� Started when you initialized AudioEngine

� But process is similar to ThreadPool
� Package your task as a std::function<void()>
� Pass this when you create the thread object

� Difference is that task is in a loop
� Has an attribute called running to manage loop
� When you set to false, the thread is done

Multithreading34

gamedesigninitiative
at cornell university

the

The CUGL Approach

Update

Game Thread Audio Thread

Update

Draw

Multithreading35

DSP Graph

Application Thread

modifies

reads

How do we protect
the critical section?

gamedesigninitiative
at cornell university

the

The Java Approach: Synchronized

public class CriticalSection {

 synchronized void method1() {…}

 synchronized void method2() {…}

 synchronized void method3() {…}

}

Multithreading36

Locked to
one thread
at a time

gamedesigninitiative
at cornell university

the

The Java Approach: Synchronized

public class CriticalSection {

 synchronized void method1() {…}

 synchronized void method2() {…}

 synchronized void method3() {…}

}

Multithreading37

Locked to
one thread
at a time

Lock applies
to all of the

methods

gamedesigninitiative
at cornell university

the

std::mutex

� Used to protect a code block
� Places lock on code block
� Only one thread can access

� Advantages
� Can replicate synchronized
� Relatively easy to use

� Disadvantages
� Locking has some cost
� Deadlocks easy if careless

Multithreading38

C++ Actually Has Two Tools

std::atomic

� Used to protect a variable
� Prevents data races
� Useful for shared setters

� Advantages
� 10x faster than std::mutex
� Sometimes easy to use

� Disadvantages
� Extremely limited in use
� Advanced use is advanced

gamedesigninitiative
at cornell university

the

std::mutex

� Used to protect a code block
� Places lock on code block
� Only one thread can access

� Advantages
� Can replicate synchronized
� Relatively easy to use

� Disadvantages
� Locking has some cost
� Deadlocks easy if careless

Multithreading39

C++ Actually Has Two Tools

std::atomic

� Used to protect a variable
� Prevents data races
� Useful for shared setters

� Advantages
� 10x faster than std::mutex
� Sometimes easy to use

� Disadvantages
� Extremely limited in use
� Advanced use is advanced

Audio thread
uses whenever
it is possible

Audio thread
uses only when

it must do so

gamedesigninitiative
at cornell university

the

Replicating Synchronized

class CriticalSection {
private:
 /** Mutex to synchronize methods */
 std::mutex _mutex;

public:
 void method() {
 _mutex.lock(); // Lock method code
 …
 _mutex.unlock(); // Release when done
 }
}

Multithreading40

gamedesigninitiative
at cornell university

the

Obervations About std::mutex

� It is not a reentrant lock (unlike synchronized)
� Locking it again inside same class will deadlock
� This matters when you have locks on helpers
� Must use std::recursive_mutex for reentrant lock

� Manual lock/unlock calls are frowned upon
� To easy to forget to unlock and deadlock
� Preferred way is to attach a locking object
� When locking object is deleted, so is lock

Multithreading41

gamedesigninitiative
at cornell university

the

Using a Locking Object

class CriticalSection {
private:
 /** Mutex to synchronize methods */
 std::mutex _mutex;

public:
 void method() {
 std::lock_guard<std::mutex> lock(_mutex);
 …
 // Mutex unlocked once lock variable deleted
 }
}

Multithreading42

gamedesigninitiative
at cornell university

the

What If Critical Section is a Variable?

� Example: running attribute controlling thread
� Audio thread loops so long as it is true
� Setting it to false stops the audio

� Mutexes exist to prevent inconsistent states
� Either all code is executed, or none is
� Cannot happen to variable assignment, right?

� C++ is not assembly code!
� A single assignment is multiple lines of assembly
� This is not thread safe (especially on Windows)

Multithreading43

gamedesigninitiative
at cornell university

the

What If Critical Section is a Variable?

� Example: running attribute controlling thread
� Audio thread loops so long as it is true
� Setting it to false stops the audio

� Mutexes exist to prevent inconsistent states
� Either all code is executed, or none is
� Cannot happen to variable assignment, right?

� C++ is not assembly code!
� A single assignment is multiple lines of assembly
� This is not thread safe (especially on Windows)

Multithreading44

This leads to data races!

gamedesigninitiative
at cornell university

the

std::atomic Protects Assignment

� Template around a type: std::atomic<int>
� Supports all primitive C++ types
� Cannot apply to objects in general, but …
� Is possible to make std::shared_ptr atomic

� Supported by two methods
� load(): An atomic getter for the value
� store(value): An atomic setter for the value
� Shared pointers are slightly more complicated

Multithreading45

gamedesigninitiative
at cornell university

the

std::atomic Protects Assignment

� Template around a type: std::atomic<int>
� Supports all primitive C++ types
� Cannot apply to objects in general, but …
� Is possible to make std::shared_ptr atomic

� Supported by two methods
� load(): An atomic getter for the value
� store(value): An atomic setter for the value
� Shared pointers are slightly more complicated

Multithreading46

Means assignment is
atomic, not methods

gamedesigninitiative
at cornell university

the

Only Use If Read/Write Are Separate

class WithAtomics {
private:
 std::atomic<int> _xvar; // Atomic integer
public:
 /** Change the value of X */
 void writeX(int val) { _xvar.store(val); }

 /** Use the value of X to compute something */
 void readX() {
 int x = _xvar.load(); // Copy value to local variable
 // Use x in local computation
 }
}

Multithreading47

gamedesigninitiative
at cornell university

the

Only Use If Read/Write Are Separate

class WithAtomics {
private:
 std::atomic<int> _xvar; // Atomic integer
public:
 /** Change the value of X */
 void writeX(int val) { _xvar.store(val); }

 /** Use the value of X to compute something */
 void readX() {
 int x = _xvar.load(); // Copy value to local variable
 // Use x in local computation
 }
}

Multithreading48

Never store _xvar
in same method

gamedesigninitiative
at cornell university

the

This Is Only Scratching the Surface

� C++ supports monitors and semaphores
� These are used for producer/consumer problem
� Monitor allows consumer to wait on producer

� C++ supports promises
� These are threads that return a value
� Simplify critical section in that case

� Atomics support memory orders
� These are used to optimize performance
� Best avoided unless you know what you are doing

Multithreading49

gamedesigninitiative
at cornell university

the

This Is Only Scratching the Surface

� C++ supports monitors and semaphores
� These are used for producer/consumer problem
� Monitor allows consumer to wait on producer

� C++ supports promises
� These are threads that return a value
� Simplify critical section in that case

� Atomics support memory orders
� These are used to optimize performance
� Best avoided unless you know what you are doing

Multithreading50

See readings if want more

gamedesigninitiative
at cornell university

the

So Why Do We Care?

� All of these threads are made for you!

� But how about making your own threads?
� Pathfinding is a classic example
� NPC behavior can also be long-running

� How can extreme can we go?
� What if all updates are in separate thread?
� Then the main thread just draws!
� This can give us potentially very high FPS

Multithreading51

gamedesigninitiative
at cornell university

the

This Will Not Quite Work

Multithreading52

Frame 1 Frame 2 Frame 3

Without update, redraw same image.
We need animation in the core loop.

gamedesigninitiative
at cornell university

the

Tweening

� Animates timed actions
� Given a duration and a start
� Interpolates scene over time

� Render thread simply…
� accesses all active actions
� moves them forward by dt

� Gameplay creates actions
� Happens less frequently
� Decoupled from render

Multithreading53

Recall: Two Approaches to Animation

Physics

� Animates physical objects
� Bodies with force and mass
� Also shape for collisions

� Render thread simply…
� steps simulation forward
� renders objects at end

� Gameplay nudges objects
� Might be less frequent
� If so, can also decouple

gamedesigninitiative
at cornell university

the

Tweening

� Animates timed actions
� Given a duration and a start
� Interpolates scene over time

� Render thread simply…
� accesses all active actions
� moves them forward by dt

� Gameplay creates actions
� Happens less frequently
� Decoupled from render

Multithreading54

Recall: Two Approaches to Animation

Physics

� Animates physical objects
� Bodies with force and mass
� Also shape for collisions

� Render thread simply…
� steps simulation forward
� renders objects at end

� Gameplay nudges objects
� Might be less frequent
� If so, can also decouple

Like networking, animation uses
dead reckoning when missing input

gamedesigninitiative
at cornell university

the

Multithreading55

A New Architecture

Update Tweening
Simulate Physics

Draw

Process Input
Process Player Actions
Process NPC Actions
Process Interactions

Game
State

Animation Thread Gameplay Thread

reads

modifies

gamedesigninitiative
at cornell university

the

Multithreading56

A New Architecture

Update Tweening
Simulate Physics

Draw

Process Input
Process Player Actions
Process NPC Actions
Process Interactions

Game
State

Animation Thread Gameplay Thread

reads

modifies

But don’t want
this slow either!

gamedesigninitiative
at cornell university

the

Summary

� Games engines are naturally multithreaded
� Offload tasks that block drawing (asset loading)
� Offload tasks that slow drawing (pathfinding)
� Execute tasks decoupled from drawing (audio)

� CUGL has native task-based parallelism
� ThreadPool for tasks off the main thread
� Application::schedule for tasks on main thread

� C++ has general-purpose tools for parallelism
� std::thread class for managing other threads
� std::mutex and std::atomic for critical sections

Multithreading57

