
Lecture 14:
User testing, 
code tracing

CS 5150, Spring 2025
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Administrative Reminders

• Schedule midpoint presentation by Mar 25
• Team w External Clients only: Contact Kimberly Budd (kj37@cornell.edu) to 

reserve a meeting room for midpoint presentation

• Only the team leader should contact. Send Team ID, Date/time, and 
#attendees. CC me.

• Assignment A3 due Mar 26

• Report #3 due Mar 25

• Peer Eval: Submit today (if not done yet)

• In-class exam: Mar 27 (Mix of short answer qs, few descriptive ones, 
example format coming soon)
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Presentation Rubrics (Midpoint): 50 points

• Content (28 points): 4 points each
• A description of what the team has agreed to deliver to the client is included.

• Team summarizes progress made so far this semester and discusses any unexpected 
events and risks.

• An overview of the remaining plan to complete and deliver the project is provided.

• Team conducts a demonstration of an operational prototype or delivered features.

• Technical terms are well-defined in language appropriate for the target audience.

• Material included is accurate and relevant to the overall purpose or goal of the 
presentation.

• Team was able to answer audience questions with reasonable clarity.
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Presentation Rubrics (Midpoint): 50 points

• Organization (9 points): 3 points each
• Information is presented in a logical sequence.

• A roadmap is provided at the beginning of the presentation that guides the 
audience.

• There are clear closing remarks that provide a summary for the audience.
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Presentation Rubrics (Midpoint): 50 points

• Presentation (13 points):
• Speakers maintain good eye contact with the audience and are appropriately 

animated.

• Speakers use a clear, audible voice.

• Delivery is poised, controlled, and follows presentation etiquette.

• Appropriate professional language is used during the presentation.

• Visual aids and demonstrations are well-prepared, informative, and not 
distracting.

• Information is communicated well.

• Length of presentation is within the assigned time limits.
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Lecture goals

• Give effective presentations to stakeholders

• Solicit feedback on user interface designs
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User experience
Previously in 5150 ….
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Terminology

• User Interface (UI)
• Look and behavior of system’s controls

• User experience (UX)
• All factors that contribute to usability of computing system

• Encompass entire usage lifecycle, from discovery to accomplishing goals

• Focus on user satisfaction

• Human-Computer Interaction (HCI)
• Academic discipline studying how people interact with computers

• Many courses and research programs in Information Science and 
Communications departments
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Usability requirements and evaluation tools

Initial Mock-up Prototype Production

Client’s opinions ✓ ✓ ✓

Competitive 
analysis

✓

Expert opinion ✓ ✓ ✓

Focus groups ✓ ✓

Observing users ✓ ✓ ✓

Measurements ✓ ✓
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Focus group

• Group interview – helps generate ideas that would not have occurred 
individually

• Participants: 5-12 potential users with similar viewpoints

• Interviewer
• Ask a structured set of questions
• Encourage group discussions
• May show mock-ups
• Summarize conclusions

• Recorder takes notes

• Repeat with contrasting user groups
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Internal project users

• Internal projects are code review tools; users are software developers

• Your classmates are candidate users!
• Not including your team members

• Not including teams working on the same feature

• Recruit classmates for focus groups, user testing
• Can coordinate on Ed Discussion

• May be easiest to pair teams

• Documentation of user studies will be expected in future report
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Accessibility

• Users have varying ability to 
interact with computer 
interfaces
• Color blindness (1/12 men, 1/200 

women)
• Poor or no vision
• Lack of hearing
• Poor manual dexterity
• Limited language skills, domain 

vocabulary
• Sensitivity to flashing light, motion 

sickness

• Accessibility requirements 
constrain the user interface
• Many systems have a legal 

requirement to support users with 
disabilities

• Example: Compliance with Section 
508 of US Rehabilitation Act
https://www.section508.gov/

• Some technologies may not be 
suitable
• Examples: Flash, untagged PDF, 

immature widget toolkits
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Equipment requirements

• Software runs on wide variety of 
devices, with diverse 
configurations, in many 
environments
• Screen size

• Graphics performance

• Network bandwidth, latency, 
stability

• Peripheral hot plugging

• Be explicit about equipment 
assumptions/requirements

• Be explicit about failure handling

• Test on variety of equipment 
(including extremes)

• Example: Chat application
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Dark patterns

• Many of our experiences with UI are in a marketing context
• Goal is to maximize engagement and manipulate user decisions

• Being commonplace and effective in marketing goals does not make a design 
pattern good
• Avoid simply aping features of slick websites (even if libraries make it easy to do so)

• User-centric design
• Interface should facilitate, not redirect, users’ objectives

• https://cacm.acm.org/magazines/2020/9/246937-dark-
patterns/fulltext
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Models
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Relating user and system models

Mental model

• User's view of system and the 
UX it provides

• May include physical metaphors 
for digital interactions

• Examples:
• Pieces on a game board

• File folders and desks

Program model

• Data, relationships, and 
functions making up the system

• Examples:
• Object identity & coordinates, 

rules constraining movement

• Tree of data units with metadata
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Model-view-controller (as a "model")

Program
model

View: user interface

Mental
model

Controller: navigation

Model: data, domain behavior

Computer systems and networks

Layers correspond with most users' mental models of computing systems.
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Separation of content from view
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Separation of content from view
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Design principles
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UI design principles

• UI design is partly an art, but some general principles apply:
• Consistency (in appearance, interaction, function)

• Feedback (what is the system doing? why does the user see what they do? 
what is about to happen?)

• Ability to interrupt or reverse actions

• Comprehensible and non-destructive error handling

• The user should feel in control (not like they're being controlled)
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Design choices: text vs. graphics

Text

• Precise, unambiguous 
(hopefully)

• Fast to compute, transmit

Graphics

• Quick to comprehend, learn
• But icons may be difficult to 

recognize

• Variations can show different 
cases

24



Command line interfaces

• Limitations of GUIs
• Only suitable for human users 

(difficult to automate)

• Awkward to control complex 
interactions (difficult to compose)

• Command line interfaces (CLI)
• User interacts with system by 

typing commands

• Composable

• Scriptable

• Can be adapted for users with 
disabilities

• Amenable to formal specification

• Usually requires learning or 
training

Internal projects
• Gerrit: Use Git CLI to create, update 

reviews
• Review Board: Use `rbt` CLI to create, 

update reviews
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Web and mobile interfaces
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Web and mobile apps

• Must consider network
• Transfers may need to be asynchronous to hide latency

• Need visual feedback that operation is in progress

• Should support cancellation

• Connections may be unreliable
• Should be robust to duplication
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Leverage simulation

• App development environments 
(e.g. Xcode, Android Studio) 
allow you to simulate screen 
sizes, touch events

• Web browser developer tools 
allow you to simulate screen 
sizes, network speed
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Test for accessibility
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Responsive design

• Automatically adjust user interface based on size of screen (or other 
device properties)
• Beyond simple layout scaling – can completely change layout to 

accommodate device

• Use CSS media queries to select different style rules in different situations
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Responsive design

Tablet Smartphone
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Flexible grids

• Divide screen into columns

• Declare how many columns each 
element occupies at each 
breakpoint
• Use more columns for narrower 

screens

• Example: Bootstrap

• Demo

Aside: semantic markup
• Many attempts to make content, 

style separate concerns
• HTML+CSS, LaTeX, DocBook XML, 

Content Management Systems

• Allows content to be delivered in 
multiple media (web, print, ebooks)

• Tension with designing around 
content
• Separating tightly-coupled info is 

more work, hard to maintain

• Style rules tend to leak into content
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Progressive enhancement

• Beware the fancy
• Modern browsers are "evergreen" - they keep themselves up-to-date and 

support many of the latest web standards

• But compatibility is still a concern
• Support for standards is uneven (e.g., Edge vs. CMSX)

• Mobile devices often stop receiving updates

• User preferences, browser extensions, firewalls make browsers heterogeneous

• Progressive enhancement
• Leverage fancier features to improve UX, but ensure that core functions are 

still available without them

• Use fallbacks, polyfills to maximize compatibility
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Poll: Progressive enhancement

PollEv.com/cs5150sp25
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Evaluation and user testing
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Analyze/design/build/evaluate loop
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Evaluation

• Design and evaluation should be done by different people

• Schedule must include time to conduct tests and make changes

• Evaluation should be ongoing
• Iterative refinements during development
• Quality assurance before deployment
• Improvements after launch

• Methods of evaluation
• Empirical (user testing)
• Quantitative (measurements on operational systems)
• Analytical (sans users; not in CS 5150)
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Standards for usability: ISO 9241:11

• Effectiveness
• The accuracy and completeness with which users achieve certain goals

• Measures: quality of solution, error rates

• Efficiency
• The relationship between the effectiveness and the resources expended in 

achieving them

• Measures: task completion time, learning time, number of clicks

• Satisfaction
• The users' comfort with and positive attitudes towards the use of the system

• Measures: attitude rating scales
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Poll: Measuring usability

PollEv.com/cs5150sp25
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User testing stages

Pre are

 onduct sessions

 naly e results

• User testing is time-consuming, 
expensive, and critical
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Preparation

• Determine goals of usability testing
• "Can a user find the required information in no more than two minutes?"

• Write the user tasks
• "Given a new customer application form, add a new customer to the customer 

database"

• Recruit participants
• Use the descriptions of users from the requirements phase to determine 

categories of potential users and user tasks
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Participants

• Don't need many (per feature)
• Diminishing returns after 5-6 users

• Look for diversity (age, experience, 
ability)

• Combine structured tests with 
free-form interviews

• Have at least two evaluators per 
test
• Should not include designers

• Advice: it's not a race!
• Example: user testing for arXiv
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Conducting sessions

• Environment
• Informal

• Simulated work environment

• Usability lab

• Give the user their task

• Observe the user
• Human observer(s)

• Recording (with permission)

• Query satisfaction
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Analyzing results

• Test the system, not the users
• Respect the data and the user's 

responses
• Do not make excuses for designs 

that failed
• If possible, use statistical 

summaries

• Pay close attention to instances 
where users:
• Were frustrated
• Took a long time
• Could not complete tasks

• Also note aspects of the design 
that did work
• Ensures they are maintained / do 

not regress in final product
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Example: Past CS 5150 methodology

How we're user testing:

• One-on-one, 30-45 min user tests with staff levels

• Specific tasks to complete

• No prior demonstration or training

• Pre-planned questions designed to stimulate feedback

• Emphasis on testing system, not the stakeholder!

• Standardized tasks / questions among all testers
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Example

Types of questions we asked:

• Which labels, keywords were confusing?

• What was the hardest task?

• What did you like, that should not be changed?

• If you were us, what would you change?

• How does this system compare to your paper based system

• How useful do you find the new report layout? (admin)

• Do you have any other comments or questions about the system?
(open ended)
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What we've found:
Issue #1, Search Form Confusion!
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What we've found:
Issue #2, Inconspicuous Edit/Confirmations!
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What we've found:
Issue #3, Confirmation Terms
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What we've found:
Issue #4, Entry Semantics
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What we've found: Issue #5,
Search Results Disambiguation & Semantics
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Measurement-based evaluations

• User testing can be done with 
(non-functional) prototypes
• Requires more interaction with 

evaluator (risk of bias)

• Measurements require an 
operational system

• Log events in users' interactions 
with system
• Clicks (when, where)
• Navigation (from page to page)
• Keystrokes
• Use of help system
• Errors encountered
• Eye tracking

• May be used for statistical 
analysis or for detailed study of 
an individual user
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Eye tracking
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Analyzing measurements

• Which interface options were 
used?

• When was the help system 
consulted?

• What errors occurred?  From 
where and how often?

• Which links were followed? 
(clickthrough data)

• Human feedback (less 
structured)
• Complaints and praise in feedback 

forms

• Bug reports

• Calls to customer service
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Refining designs

• Do not allow test evaluators to become designers
• Designers are poor evaluators of their own work,

• But designers know requirements, constraints, context of design
• Know which problems might be addressed with small changes

• Know which problems require major changes that should be escalated

• Know which user requests are mutually incompatible
• Balance between configurability and simplicity (designer's job)

• Designers and evaluators must work as a team
• But not try to do each other's work

56



User testing in CS 5150

• All projects must conduct user testing of user interfaces you design
• Internal projects: recruit classmates from other teams

• Decide how much training users should have
• They should probably be familiar with existing system

• You can provide training (but don't "teach to the test"), or a user manual

• Design tasks & metrics
• "Which files has your reviewer read so far?"

• "Which, if any, of your commit messages has your reviewer left a comment on?"

• "Add a reviewer comment to this file that was not modified"

• Design survey
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Code tracing
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Techniques

• Monitor application logs
• Enable logging for your project

• Developer tools network view
• Look for mutating methods (POST, PUT, DELETE, vs. GET); ignore static 

resources

• Look at initiator stack trace
• Ignore framework methods (jQuery, etc.)

• Look for promising files, then read them

• Search source code
• Filter results (ignore static, tests, docs)
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