
Lecture 14:
User testing,
code tracing

CS 5150, Spring 2025

1

Administrative Reminders

• Schedule midpoint presentation by Mar 25
• Team w External Clients only: Contact Kimberly Budd (kj37@cornell.edu) to

reserve a meeting room for midpoint presentation

• Only the team leader should contact. Send Team ID, Date/time, and
#attendees. CC me.

• Assignment A3 due Mar 26

• Report #3 due Mar 25

• Peer Eval: Submit today (if not done yet)

• In-class exam: Mar 27 (Mix of short answer qs, few descriptive ones,
example format coming soon)

2

mailto:kj37@cornell.edu

Presentation Rubrics (Midpoint): 50 points

• Content (28 points): 4 points each
• A description of what the team has agreed to deliver to the client is included.

• Team summarizes progress made so far this semester and discusses any unexpected
events and risks.

• An overview of the remaining plan to complete and deliver the project is provided.

• Team conducts a demonstration of an operational prototype or delivered features.

• Technical terms are well-defined in language appropriate for the target audience.

• Material included is accurate and relevant to the overall purpose or goal of the
presentation.

• Team was able to answer audience questions with reasonable clarity.

3

Presentation Rubrics (Midpoint): 50 points

• Organization (9 points): 3 points each
• Information is presented in a logical sequence.

• A roadmap is provided at the beginning of the presentation that guides the
audience.

• There are clear closing remarks that provide a summary for the audience.

4

Presentation Rubrics (Midpoint): 50 points

• Presentation (13 points):
• Speakers maintain good eye contact with the audience and are appropriately

animated.

• Speakers use a clear, audible voice.

• Delivery is poised, controlled, and follows presentation etiquette.

• Appropriate professional language is used during the presentation.

• Visual aids and demonstrations are well-prepared, informative, and not
distracting.

• Information is communicated well.

• Length of presentation is within the assigned time limits.

5

Lecture goals

• Give effective presentations to stakeholders

• Solicit feedback on user interface designs

6

User experience
Previously in 5150 ….

7

Terminology

• User Interface (UI)
• Look and behavior of system’s controls

• User experience (UX)
• All factors that contribute to usability of computing system

• Encompass entire usage lifecycle, from discovery to accomplishing goals

• Focus on user satisfaction

• Human-Computer Interaction (HCI)
• Academic discipline studying how people interact with computers

• Many courses and research programs in Information Science and
Communications departments

8

Usability requirements and evaluation tools

Initial Mock-up Prototype Production

Client’s opinions ✓ ✓ ✓

Competitive
analysis

✓

Expert opinion ✓ ✓ ✓

Focus groups ✓ ✓

Observing users ✓ ✓ ✓

Measurements ✓ ✓

9

Focus group

• Group interview – helps generate ideas that would not have occurred
individually

• Participants: 5-12 potential users with similar viewpoints

• Interviewer
• Ask a structured set of questions
• Encourage group discussions
• May show mock-ups
• Summarize conclusions

• Recorder takes notes

• Repeat with contrasting user groups

10

Internal project users

• Internal projects are code review tools; users are software developers

• Your classmates are candidate users!
• Not including your team members

• Not including teams working on the same feature

• Recruit classmates for focus groups, user testing
• Can coordinate on Ed Discussion

• May be easiest to pair teams

• Documentation of user studies will be expected in future report

11

Accessibility

• Users have varying ability to
interact with computer
interfaces
• Color blindness (1/12 men, 1/200

women)
• Poor or no vision
• Lack of hearing
• Poor manual dexterity
• Limited language skills, domain

vocabulary
• Sensitivity to flashing light, motion

sickness

• Accessibility requirements
constrain the user interface
• Many systems have a legal

requirement to support users with
disabilities

• Example: Compliance with Section
508 of US Rehabilitation Act
https://www.section508.gov/

• Some technologies may not be
suitable
• Examples: Flash, untagged PDF,

immature widget toolkits

12

https://www.section508.gov/

Equipment requirements

• Software runs on wide variety of
devices, with diverse
configurations, in many
environments
• Screen size

• Graphics performance

• Network bandwidth, latency,
stability

• Peripheral hot plugging

• Be explicit about equipment
assumptions/requirements

• Be explicit about failure handling

• Test on variety of equipment
(including extremes)

• Example: Chat application

13

Dark patterns

• Many of our experiences with UI are in a marketing context
• Goal is to maximize engagement and manipulate user decisions

• Being commonplace and effective in marketing goals does not make a design
pattern good
• Avoid simply aping features of slick websites (even if libraries make it easy to do so)

• User-centric design
• Interface should facilitate, not redirect, users’ objectives

• https://cacm.acm.org/magazines/2020/9/246937-dark-
patterns/fulltext

14

https://cacm.acm.org/magazines/2020/9/246937-dark-patterns/fulltext
https://cacm.acm.org/magazines/2020/9/246937-dark-patterns/fulltext

Models

16

Relating user and system models

Mental model

• User's view of system and the
UX it provides

• May include physical metaphors
for digital interactions

• Examples:
• Pieces on a game board

• File folders and desks

Program model

• Data, relationships, and
functions making up the system

• Examples:
• Object identity & coordinates,

rules constraining movement

• Tree of data units with metadata

17

Model-view-controller (as a "model")

Program
model

View: user interface

Mental
model

Controller: navigation

Model: data, domain behavior

Computer systems and networks

Layers correspond with most users' mental models of computing systems.

18

Separation of content from view

19

Separation of content from view

20

Design principles

21

UI design principles

• UI design is partly an art, but some general principles apply:
• Consistency (in appearance, interaction, function)

• Feedback (what is the system doing? why does the user see what they do?
what is about to happen?)

• Ability to interrupt or reverse actions

• Comprehensible and non-destructive error handling

• The user should feel in control (not like they're being controlled)

22

Design choices: text vs. graphics

Text

• Precise, unambiguous
(hopefully)

• Fast to compute, transmit

Graphics

• Quick to comprehend, learn
• But icons may be difficult to

recognize

• Variations can show different
cases

24

Command line interfaces

• Limitations of GUIs
• Only suitable for human users

(difficult to automate)

• Awkward to control complex
interactions (difficult to compose)

• Command line interfaces (CLI)
• User interacts with system by

typing commands

• Composable

• Scriptable

• Can be adapted for users with
disabilities

• Amenable to formal specification

• Usually requires learning or
training

Internal projects
• Gerrit: Use Git CLI to create, update

reviews
• Review Board: Use `rbt` CLI to create,

update reviews

25

Web and mobile interfaces

26

Web and mobile apps

• Must consider network
• Transfers may need to be asynchronous to hide latency

• Need visual feedback that operation is in progress

• Should support cancellation

• Connections may be unreliable
• Should be robust to duplication

27

Leverage simulation

• App development environments
(e.g. Xcode, Android Studio)
allow you to simulate screen
sizes, touch events

• Web browser developer tools
allow you to simulate screen
sizes, network speed

28

Test for accessibility

29

30

Responsive design

• Automatically adjust user interface based on size of screen (or other
device properties)
• Beyond simple layout scaling – can completely change layout to

accommodate device

• Use CSS media queries to select different style rules in different situations

31

Responsive design

Tablet Smartphone

32

Flexible grids

• Divide screen into columns

• Declare how many columns each
element occupies at each
breakpoint
• Use more columns for narrower

screens

• Example: Bootstrap

• Demo

Aside: semantic markup
• Many attempts to make content,

style separate concerns
• HTML+CSS, LaTeX, DocBook XML,

Content Management Systems

• Allows content to be delivered in
multiple media (web, print, ebooks)

• Tension with designing around
content
• Separating tightly-coupled info is

more work, hard to maintain

• Style rules tend to leak into content

33

https://getbootstrap.com/docs/5.1/layout/grid/
https://getbootstrap.com/docs/5.1/layout/grid/

Progressive enhancement

• Beware the fancy
• Modern browsers are "evergreen" - they keep themselves up-to-date and

support many of the latest web standards

• But compatibility is still a concern
• Support for standards is uneven (e.g., Edge vs. CMSX)

• Mobile devices often stop receiving updates

• User preferences, browser extensions, firewalls make browsers heterogeneous

• Progressive enhancement
• Leverage fancier features to improve UX, but ensure that core functions are

still available without them

• Use fallbacks, polyfills to maximize compatibility

34

Poll: Progressive enhancement

PollEv.com/cs5150sp25

35

Evaluation and user testing

36

Analyze/design/build/evaluate loop

37

Evaluation

• Design and evaluation should be done by different people

• Schedule must include time to conduct tests and make changes

• Evaluation should be ongoing
• Iterative refinements during development
• Quality assurance before deployment
• Improvements after launch

• Methods of evaluation
• Empirical (user testing)
• Quantitative (measurements on operational systems)
• Analytical (sans users; not in CS 5150)

38

Standards for usability: ISO 9241:11

• Effectiveness
• The accuracy and completeness with which users achieve certain goals

• Measures: quality of solution, error rates

• Efficiency
• The relationship between the effectiveness and the resources expended in

achieving them

• Measures: task completion time, learning time, number of clicks

• Satisfaction
• The users' comfort with and positive attitudes towards the use of the system

• Measures: attitude rating scales

39
https://www.iso.org/standard/63500.html

https://www.iso.org/standard/63500.html

Poll: Measuring usability

PollEv.com/cs5150sp25

40

User testing stages

Pre are

 onduct sessions

 naly e results

• User testing is time-consuming,
expensive, and critical

41

Preparation

• Determine goals of usability testing
• "Can a user find the required information in no more than two minutes?"

• Write the user tasks
• "Given a new customer application form, add a new customer to the customer

database"

• Recruit participants
• Use the descriptions of users from the requirements phase to determine

categories of potential users and user tasks

42

Participants

• Don't need many (per feature)
• Diminishing returns after 5-6 users

• Look for diversity (age, experience,
ability)

• Combine structured tests with
free-form interviews

• Have at least two evaluators per
test
• Should not include designers

• Advice: it's not a race!
• Example: user testing for arXiv

43

Conducting sessions

• Environment
• Informal

• Simulated work environment

• Usability lab

• Give the user their task

• Observe the user
• Human observer(s)

• Recording (with permission)

• Query satisfaction

44

Analyzing results

• Test the system, not the users
• Respect the data and the user's

responses
• Do not make excuses for designs

that failed
• If possible, use statistical

summaries

• Pay close attention to instances
where users:
• Were frustrated
• Took a long time
• Could not complete tasks

• Also note aspects of the design
that did work
• Ensures they are maintained / do

not regress in final product

45

Example: Past CS 5150 methodology

How we're user testing:

• One-on-one, 30-45 min user tests with staff levels

• Specific tasks to complete

• No prior demonstration or training

• Pre-planned questions designed to stimulate feedback

• Emphasis on testing system, not the stakeholder!

• Standardized tasks / questions among all testers

46

Example

Types of questions we asked:

• Which labels, keywords were confusing?

• What was the hardest task?

• What did you like, that should not be changed?

• If you were us, what would you change?

• How does this system compare to your paper based system

• How useful do you find the new report layout? (admin)

• Do you have any other comments or questions about the system?
(open ended)

47

What we've found:
Issue #1, Search Form Confusion!

48

What we've found:
Issue #2, Inconspicuous Edit/Confirmations!

49

What we've found:
Issue #3, Confirmation Terms

50

What we've found:
Issue #4, Entry Semantics

51

What we've found: Issue #5,
Search Results Disambiguation & Semantics

52

Measurement-based evaluations

• User testing can be done with
(non-functional) prototypes
• Requires more interaction with

evaluator (risk of bias)

• Measurements require an
operational system

• Log events in users' interactions
with system
• Clicks (when, where)
• Navigation (from page to page)
• Keystrokes
• Use of help system
• Errors encountered
• Eye tracking

• May be used for statistical
analysis or for detailed study of
an individual user

53

Eye tracking

54

Analyzing measurements

• Which interface options were
used?

• When was the help system
consulted?

• What errors occurred? From
where and how often?

• Which links were followed?
(clickthrough data)

• Human feedback (less
structured)
• Complaints and praise in feedback

forms

• Bug reports

• Calls to customer service

55

Refining designs

• Do not allow test evaluators to become designers
• Designers are poor evaluators of their own work,

• But designers know requirements, constraints, context of design
• Know which problems might be addressed with small changes

• Know which problems require major changes that should be escalated

• Know which user requests are mutually incompatible
• Balance between configurability and simplicity (designer's job)

• Designers and evaluators must work as a team
• But not try to do each other's work

56

User testing in CS 5150

• All projects must conduct user testing of user interfaces you design
• Internal projects: recruit classmates from other teams

• Decide how much training users should have
• They should probably be familiar with existing system

• You can provide training (but don't "teach to the test"), or a user manual

• Design tasks & metrics
• "Which files has your reviewer read so far?"

• "Which, if any, of your commit messages has your reviewer left a comment on?"

• "Add a reviewer comment to this file that was not modified"

• Design survey

57

Code tracing

58

Techniques

• Monitor application logs
• Enable logging for your project

• Developer tools network view
• Look for mutating methods (POST, PUT, DELETE, vs. GET); ignore static

resources

• Look at initiator stack trace
• Ignore framework methods (jQuery, etc.)

• Look for promising files, then read them

• Search source code
• Filter results (ignore static, tests, docs)

59

	Slide 1: Lecture 14: User testing, code tracing
	Slide 2: Administrative Reminders
	Slide 3: Presentation Rubrics (Midpoint): 50 points
	Slide 4: Presentation Rubrics (Midpoint): 50 points
	Slide 5: Presentation Rubrics (Midpoint): 50 points
	Slide 6: Lecture goals
	Slide 7: User experience
	Slide 8: Terminology
	Slide 9: Usability requirements and evaluation tools
	Slide 10: Focus group
	Slide 11: Internal project users
	Slide 12: Accessibility
	Slide 13: Equipment requirements
	Slide 14: Dark patterns
	Slide 16: Models
	Slide 17: Relating user and system models
	Slide 18: Model-view-controller (as a "model")
	Slide 19: Separation of content from view
	Slide 20: Separation of content from view
	Slide 21: Design principles
	Slide 22: UI design principles
	Slide 24: Design choices: text vs. graphics
	Slide 25: Command line interfaces
	Slide 26: Web and mobile interfaces
	Slide 27: Web and mobile apps
	Slide 28: Leverage simulation
	Slide 29: Test for accessibility
	Slide 30
	Slide 31: Responsive design
	Slide 32: Responsive design
	Slide 33: Flexible grids
	Slide 34: Progressive enhancement
	Slide 35: Poll: Progressive enhancement
	Slide 36: Evaluation and user testing
	Slide 37: Analyze/design/build/evaluate loop
	Slide 38: Evaluation
	Slide 39: Standards for usability: ISO 9241:11
	Slide 40: Poll: Measuring usability
	Slide 41: User testing stages
	Slide 42: Preparation
	Slide 43: Participants
	Slide 44: Conducting sessions
	Slide 45: Analyzing results
	Slide 46: Example: Past CS 5150 methodology
	Slide 47: Example
	Slide 48: What we've found: Issue #1, Search Form Confusion!
	Slide 49: What we've found: Issue #2, Inconspicuous Edit/Confirmations!
	Slide 50: What we've found: Issue #3, Confirmation Terms
	Slide 51: What we've found: Issue #4, Entry Semantics
	Slide 52: What we've found: Issue #5, Search Results Disambiguation & Semantics
	Slide 53: Measurement-based evaluations
	Slide 54: Eye tracking
	Slide 55: Analyzing measurements
	Slide 56: Refining designs
	Slide 57: User testing in CS 5150
	Slide 58: Code tracing
	Slide 59: Techniques

