
Lecture 13:
Presentations,
user experience
CS 5150, Spring 2025

1

Administrative Reminders

• Assignment A3 released – due Mar 26

• Schedule your midpoint presentations (last date Mar 25)
• Let me know if you need a meeting room

• For teams with external clients: include your client and instructor in
the meeting

• Submit Peer Evaluation by Mar 7

2

Lecture goals

• Give effective presentations to stakeholders

• Solicit feedback on user interface designs

3

Presentations

4

Presentations in Software Engineering

• Important in every project phase
• Marketing to potential clients
• Reporting progress to senior

management
• Reports and demonstrations to

clients
• Communication with colleagues

on dev team

• Important for career growth
• Unlikely to achieve leadership

position if you cannot give decent
presentations

Not everyone is born a great
presenter, but everybody can be
well-prepared

• If you are uncomfortable, take
every opportunity to gain
experience

5

Presentations in CS 5150

• Two required presentations:
• Progress update during 3rd sprint

• Preliminary delivery during 5th
sprint

• Every team member must
present a portion of one
presentation
• Less experienced presenters will

be more comfortable presenting
things they personally worked on

• Audience: your client
• May not be technical (internal

projects: client is manager, not
developer)

• Course staff will evaluate
presentation contents and
technique

6

Planning for presentations

• Know your purpose, audience,
and resources
• What is the presentation meant to

achieve?
• Confirm understanding?

• Obtain client approval?

• Propose new feature?

• Solicit feedback on prototype?

• Build excitement/buy-in?

• Request assistance?

• Report progress?

• Train users?

• Who must attend the presentation
for it to achieve its purpose?
• Prospective clients?

• Project management?

• System users?

• Other developers?

• How is your presentation
constrained?
• Time available

• Projector/screen sharing?

• Internet access?

7

Time management

• Midpoint: 15 min for
presentation, 15 min for
questions

• Final: 30 min presentation, 15
min for questions

• Expect interruptions
(presentation must serve the
audience; is not an end in itself)

• Have an agenda that fulfils the
presentation’s purpose

• Rehearse your presentation on
the clock!

8

Remote presentations

• Good audio is essential
• Make a practice recording with all

presenters in their anticipated
locations/positions

• Good video needs good lighting

• Client must be able to see all
demonstrations and visual aids
• Screen share

• Whiteboard/annotations

• Auxiliary camera

• Beware multiple computers in
one room

In-person presentations preferred

9

Topics

• Topics on agenda should serve
purpose of meeting
• Description of what you have

agreed to deliver to your client
(shared definition of success)

• Summary of progress since last
presentation/report

• Unexpected events and risks

• Overview of remaining plan to
complete and deliver project

• Test plan and test cases

• Results of user testing

• Technical hurdles (if client is
technical)

• Demonstrations are always
welcome
• Show mock-ups / demonstrations

/ prototypes before talking about
them

10

CS 5150 topics

• Early-stage topics
• Confirm agreement on scope and

goals
“The project will be a success if …”

• Progress to date
“This is our understanding of your
requirements…”
• Mock-ups, designs, etc.

• Schedule and plan
“The main risks are…”
• What has changed since feasibility

study?

• Mid-stage topics
• Demonstration of operational

prototype or delivered features

• Results of user studies

11

Visual aids

• Slides
• Common, but not required (and can be a liability)

• Keep things simple (purpose is conveying information, not entertainment)

• Must be legible
• Large fonts (including in figures!) – 20pt minimum

• Dark text on light background

• Use to facilitate presentation, not as a reference source

• Handouts
• Can accommodate more simultaneous detail than a slide

• Beware potential for distraction

12

Preparations

• Must have a rehearsal
• Include all demos and visual aids; don’t skip anything

• Use same laptops as you plan to use later

• Any unrehearsed changes are a risk – minimize them

• Time each section

• Plan presenter coordination
• Option 1: Moderator calls on each presenter

• Option 2: Each presenter introduces the next

• Test equipment in location if possible
• Projector connection, network connection, power availability

13

Presentation behavior

• Presenter (1) should stand; others should sit

• Appoint a recorder

• Briefly introduce each team member

• When asked a question,
• If presenter knows answer, answer it
• Presenter may ask another team member to respond
• Okay to make note and reply later

• Never interrupt your colleagues
• If you have information to add, raise your hand, allow presenter to decide

if/when to call on you

14

Demonstrations

• Require preparation and practice to be successful

• Technical preparations:
• Load and configure all software before presentation. Test it, then change

nothing
• If you need test data or accounts, create them in advance
• If complex commands must be typed, create a cheat sheet or shell script.

Ensure they work verbatim

• Prepare a script
• Include setup, list of examples, task assignments, and cleanup

• Tell audience what they are seeing
• Production-ready code? Mock-up? Proof-of-concept?

15

Presentation tips

• Not a lecture!
• Also not an advertisement

• You are not the audience
• Try to imagine the client’s

perspective

• Not an end in itself
• Be able to articulate its purpose

• Not a controlled document
• Should not serve as primary

documentation

• Not about showing off
• Don’t mislead audience or

overpromise

• Explain purpose of topics, figures
• Why should the audience pay

attention to this?

16

Looking ahead: CS 5150 final presentation

• Goals
• Personal & team satisfaction from

handing over good work to client
• Complete course in good style

with good grade
• Clean handover without loose

ends
• A good basis for future

involvement with client, team, or
project

• Audience interests
• Client: has invested effort in this

project
• Is it ready for production?
• Should they invest more to

deploy/maintain it?
• Should this approach be abandoned?

• Course staff
• What has been accomplished?
• What has been learned?
• Is the client satisfied?
• Are you handing over a maintainable

system?

17

Final presentation components

• Demonstration of operational
system
• Walk through scenario

• Be honest about gaps, weaknesses

• Presentation
• Brief review of context, goals

• Honest summary of achievements
and misses

• Summary of what is being
delivered

• Time for discussion

• Must fit within 30 min
• Cannot walk through everything

18

User experience

19

Overview

• A system is only as good as the interface it provides to users
• Symptoms of poor usability:

• Failure to attract, retain market share (users give up in disgust, Orkut vs Facebook)
• Users fail to find or misinterpret important information
• System can be operated in an unsafe manner (example: 737 MAX)

• Usability aspects that improve system effectiveness:
• Appropriate functionality
• Easy navigation
• Fast response times
• Elegant, organized design

• Supporting users is more than a cosmetic flourish
• Developing good UI takes skill and time

20

Example: Hawaiian public alerts

21

Terminology

• User Interface (UI)
• Look and behavior of system’s controls

• User experience (UX)
• All factors that contribute to usability of computing system

• Encompass entire usage lifecycle, from discovery to accomplishing goals

• Focus on user satisfaction

• Human-Computer Interaction (HCI)
• Academic discipline studying how people interact with computers

• Many courses and research programs in Information Science and
Communications departments

22

Usability requirements and evaluation tools

Initial Mock-up Prototype Production

Client’s opinions ✓ ✓ ✓

Competitive
analysis

✓

Expert opinion ✓ ✓ ✓

Focus groups ✓ ✓

Observing users ✓ ✓ ✓

Measurements ✓ ✓

23

Focus group

• Group interview – helps generate ideas that would not have occurred
individually

• Participants: 5-12 potential users with similar viewpoints

• Interviewer
• Ask a structured set of questions
• Encourage group discussions
• May show mock-ups
• Summarize conclusions

• Recorder takes notes

• Repeat with contrasting user groups

24

Internal project users

• Internal projects are code review tools; users are software developers

• Your classmates are candidate users!
• Not including your team members

• Not including teams working on the same feature

• Recruit classmates for focus groups, user testing
• Can coordinate on Ed Discussion

• May be easiest to pair teams

• Documentation of user studies will be expected in future report

25

Accessibility

• Users have varying ability to
interact with computer
interfaces
• Color blindness (1/12 men, 1/200

women)
• Poor or no vision
• Lack of hearing
• Poor manual dexterity
• Limited language skills, domain

vocabulary
• Sensitivity to flashing light, motion

sickness

• Accessibility requirements
constrain the user interface
• Many systems have a legal

requirement to support users with
disabilities

• Example: Compliance with Section
508 of US Rehabilitation Act
https://www.section508.gov/

• Some technologies may not be
suitable
• Examples: Flash, untagged PDF,

immature widget toolkits

26

https://www.section508.gov/

Equipment requirements

• Software runs on wide variety of
devices, with diverse
configurations, in many
environments
• Screen size

• Graphics performance

• Network bandwidth, latency,
stability

• Peripheral hot plugging

• Be explicit about equipment
assumptions/requirements

• Be explicit about failure handling

• Test on variety of equipment
(including extremes)

• Example: Chat application

27

Dark patterns

• Many of our experiences with UI are in a marketing context
• Goal is to maximize engagement and manipulate user decisions

• Being commonplace and effective in marketing goals does not make a design
pattern good
• Avoid simply aping features of slick websites (even if libraries make it easy to do so)

• User-centric design
• Interface should facilitate, not redirect, users’ objectives

• https://cacm.acm.org/magazines/2020/9/246937-dark-
patterns/fulltext

28

https://cacm.acm.org/magazines/2020/9/246937-dark-patterns/fulltext
https://cacm.acm.org/magazines/2020/9/246937-dark-patterns/fulltext

Dark Patterns (Misleading Info)

29

Analyze/design/build/evaluate loop

30

Development processes

• Written requirements poor fit
• Requirements benefit from sketches, comparison with existing systems

• Designs should include graphical elements, benefit from prototypes

• UI must be tested with users; expect requirements and design
changes
• Schedules must include time for testing and time to make changes

31

UI prototypes

• Preliminary version used to
iterate rapidly between
requirements and design
• Minimize polishing effort to

maximize iteration speed

• Paper sketches
• Lowest effort, so amenable to

major changes

• Wireframe
• Outline layout

• Mock-up
• Graphic designs with detailed

layout, color

• Operational prototype
• Enables interaction and navigation

32

Example: paper prototype

From past CS 5150 project
33

Example: wireframe

From past CS 5150 project
34

Example: mock-up

35

Interactive prototypes

• "Clickable" - responds in limited
ways to user interactions
• Illustrate time-dependent design

• Animations

• Drag-and-drop

• Navigate between pages, dialogs

• Not production code
• Does not update model data,

trigger external events

• Make sure client understands
limitations

• Collaborative tools:
• Figma

• Adobe XD

• (many others)

36

Models

37

Relating user and system models

Mental model

• User's view of system and the
UX it provides

• May include physical metaphors
for digital interactions

• Examples:
• Pieces on a game board

• File folders and desks

Program model

• Data, relationships, and
functions making up the system

• Examples:
• Object identity & coordinates,

rules constraining movement

• Tree of data units with metadata

38

Model mismatches

Mental model Program model

39

Model mismatches

https://www.joelonsoftware.com/2000/04/11/figuring-out-what-they-expected/

PollEv.com/cs5150sp25

40

Model mismatches

https://www.joelonsoftware.com/2000/04/11/figuring-out-what-they-expected/

PollEv.com/cs5150sp25

41

Model-view-controller (as a "model")

Program
model

View: user interface

Mental
model

Controller: navigation

Model: data, domain behavior

Computer systems and networks

Layers correspond with most users' mental models of computing systems.

42

Layer 0: Computer systems and networks

• Performance, reliability, predictability of systems have a large impact
on user experience

• Interfaces may be designed for specific hardware capabilities and
constraints
• Screen sizes, input devices, sensors, graphics/multimedia processing

• Later: Adapting to constraints of web browsers and smartphones

• Example: youtube video quality, amazon prime video

43

Layer 1: Model

• Provides all functionality of
program except for user
interaction
• Program logic, services

• Data structures, file systems

• Content (text, graphics, audio,
metadata, etc.)

• Beware: easy for clients,
designers to specify new
behavior that is not supported
by existing model

44

Separation of content from view

45

Separation of content from view

46

Layer 2: Control (navigation)

• Controller manages flow of application
• Controls navigation between various "displays"

• Web pages, window forms, pop-up dialogs, app screens

• Updates model, view in response to user interaction

• Controller role varies between implementations

47

Layer 3: View (user interface)

• Appearance of displays and facilities for interaction
• Graphical elements (fonts, colors, icons, images, animations)

• Control widgets (text boxes, menus, buttons, sliders)

• User input (touchscreen, gamepad, keyboard & mouse, buttons & knobs)

• For a quality user interface, teams need someone skilled in graphic
design

48

Design principles

49

UI design principles

• UI design is partly an art, but some general principles apply:
• Consistency (in appearance, interaction, function)

• Feedback (what is the system doing? why does the user see what they do?
what is about to happen?)

• Ability to interrupt or reverse actions

• Comprehensible and non-destructive error handling

• The user should feel in control (not like they're being controlled)

50

Example considerations: navigation menus

Advantages

• Easy for users to learn and use

• Avoids certain categories of
error

Challenges

• How to handle large number of
choices?
• Scrolling menu (e.g. lists of

countries or states)

• Hierarchical

• Filtered based on typing

• Users typically prefer menu
systems that are broad and
shallow (rather than deep)

51

Design choices: text vs. graphics

Text

• Precise, unambiguous
(hopefully)

• Fast to compute, transmit

Graphics

• Quick to comprehend, learn
• But icons may be difficult to

recognize

• Variations can show different
cases

52

Command line interfaces

• Limitations of GUIs
• Only suitable for human users

(difficult to automate)

• Awkward to control complex
interactions (difficult to compose)

• Command line interfaces (CLI)
• User interacts with system by

typing commands

• Composable

• Scriptable

• Can be adapted for users with
disabilities

• Amenable to formal specification

• Usually requires learning or
training

Internal projects
• Gerrit: Use Git CLI to create, update

reviews
• Review Board: Use `rbt` CLI to create,

update reviews

53

Web and mobile interfaces

54

Device-aware interfaces

• How does a laptop computer
differ from a desktop?

• What is special about a
smartphone?

55

Web and mobile apps

• Must consider network
• Transfers may need to be asynchronous to hide latency

• Need visual feedback that operation is in progress

• Should support cancellation

• Connections may be unreliable
• Should be robust to duplication

56

Leverage simulation

• App development environments
(e.g. Xcode, Android Studio)
allow you to simulate screen
sizes, touch events

• Web browser developer tools
allow you to simulate screen
sizes, network speed

57

Test for accessibility

58

Responsive design

• Automatically adjust user interface based on size of screen (or other
device properties)
• Beyond simple layout scaling – can completely change layout to

accommodate device

• Use CSS media queries to select different style rules in different situations

59

Poll: Progressive enhancement

PollEv.com/cs5150sp25

60

Evaluation and user testing

61

Analyze/design/build/evaluate loop

62

Evaluation

• Design and evaluation should be done by different people

• Schedule must include time to conduct tests and make changes

• Evaluation should be ongoing
• Iterative refinements during development
• Quality assurance before deployment
• Improvements after launch

• Methods of evaluation
• Empirical (user testing)
• Quantitative (measurements on operational systems)
• Analytical (sans users; not in CS 5150)

63

Standards for usability: ISO 9241:11

• Effectiveness
• The accuracy and completeness with which users achieve certain goals

• Measures: quality of solution, error rates

• Efficiency
• The relationship between the effectiveness and the resources expended in

achieving them

• Measures: task completion time, learning time, number of clicks

• Satisfaction
• The users' comfort with and positive attitudes towards the use of the system

• Measures: attitude rating scales

64

Poll: Measuring usability

PollEv.com/cs5150sp25

65

User testing stages

 repare

 onduct sessions

 naly e results

• User testing is time-consuming,
expensive, and critical

66

Preparation

• Determine goals of usability testing
• "Can a user find the required information in no more than two minutes?"

• Write the user tasks
• "Given a new customer application form, add a new customer to the customer

database"

• Recruit participants
• Use the descriptions of users from the requirements phase to determine

categories of potential users and user tasks

67

Participants

• Don't need many (per feature)
• Diminishing returns after 5-6 users

• Look for diversity (age, experience,
ability)

• Combine structured tests with
free-form interviews

• Have at least two evaluators per
test
• Should not include designers

• Advice: it's not a race!
• Example: user testing for arXiv

68

Conducting sessions

• Environment
• Informal

• Simulated work environment

• Usability lab

• Give the user their task

• Observe the user
• Human observer(s)

• Recording (with permission)

• Query satisfaction

69

Analyzing results

• Test the system, not the users
• Respect the data and the user's

responses
• Do not make excuses for designs

that failed
• If possible, use statistical

summaries

• Pay close attention to instances
where users:
• Were frustrated
• Took a long time
• Could not complete tasks

• Also note aspects of the design
that did work
• Ensures they are maintained / do

not regress in final product

70

Example: Past CS 5150 methodology

How we're user testing:

• One-on-one, 30-45 min user tests with staff levels

• Specific tasks to complete

• No prior demonstration or training

• Pre-planned questions designed to stimulate feedback

• Emphasis on testing system, not the stakeholder!

• Standardized tasks / questions among all testers

71

Example

Types of questions we asked:

• Which labels, keywords were confusing?

• What was the hardest task?

• What did you like, that should not be changed?

• If you were us, what would you change?

• How does this system compare to your paper based system

• How useful do you find the new report layout? (admin)

• Do you have any other comments or questions about the system?
(open ended)

72

What we've found:
Issue #1, Search Form Confusion!

73

What we've found:
Issue #2, Inconspicuous Edit/Confirmations!

74

What we've found:
Issue #3, Confirmation Terms

75

What we've found:
Issue #4, Entry Semantics

76

What we've found: Issue #5,
Search Results Disambiguation & Semantics

77

Measurement-based evaluations

• User testing can be done with
(non-functional) prototypes
• Requires more interaction with

evaluator (risk of bias)

• Measurements require an
operational system

• Log events in users' interactions
with system
• Clicks (when, where)
• Navigation (from page to page)
• Keystrokes
• Use of help system
• Errors encountered
• Eye tracking

• May be used for statistical
analysis or for detailed study of
an individual user

78

Eye tracking

79

Analyzing measurements

• Which interface options were
used?

• When was the help system
consulted?

• What errors occurred? From
where and how often?

• Which links were followed?
(clickthrough data)

• Human feedback (less
structured)
• Complaints and praise in feedback

forms

• Bug reports

• Calls to customer service

80

Refining designs

• Do not allow test evaluators to become designers
• Designers are poor evaluators of their own work,

• But designers know requirements, constraints, context of design
• Know which problems might be addressed with small changes

• Know which problems require major changes that should be escalated

• Know which user requests are mutually incompatible
• Balance between configurability and simplicity (designer's job)

• Designers and evaluators must work as a team
• But not try to do each other's work

81

User testing in CS 5150

• All projects must conduct user testing of user interfaces you design
• Internal projects: recruit classmates from other teams

• Decide how much training users should have
• They should probably be familiar with existing system

• You can provide training (but don't "teach to the test"), or a user manual

• Design tasks & metrics
• "Which files has your reviewer read so far?"

• "Which, if any, of your commit messages has your reviewer left a comment on?"

• "Add a reviewer comment to this file that was not modified"

• Design survey

82

Code tracing

83

Techniques

• Monitor application logs

• Developer tools network view
• Look for mutating methods (POST, PUT, DELETE, vs. GET); ignore static

resources

• Look at initiator stack trace
• Ignore framework methods (jQuery, etc.)

• Look for promising files, then read them

• Search source code
• Filter results (ignore static, tests, docs)

84

	Slide 1: Lecture 13: Presentations, user experience
	Slide 2: Administrative Reminders
	Slide 3: Lecture goals
	Slide 4: Presentations
	Slide 5: Presentations in Software Engineering
	Slide 6: Presentations in CS 5150
	Slide 7: Planning for presentations
	Slide 8: Time management
	Slide 9: Remote presentations
	Slide 10: Topics
	Slide 11: CS 5150 topics
	Slide 12: Visual aids
	Slide 13: Preparations
	Slide 14: Presentation behavior
	Slide 15: Demonstrations
	Slide 16: Presentation tips
	Slide 17: Looking ahead: CS 5150 final presentation
	Slide 18: Final presentation components
	Slide 19: User experience
	Slide 20: Overview
	Slide 21: Example: Hawaiian public alerts
	Slide 22: Terminology
	Slide 23: Usability requirements and evaluation tools
	Slide 24: Focus group
	Slide 25: Internal project users
	Slide 26: Accessibility
	Slide 27: Equipment requirements
	Slide 28: Dark patterns
	Slide 29: Dark Patterns (Misleading Info)
	Slide 30: Analyze/design/build/evaluate loop
	Slide 31: Development processes
	Slide 32: UI prototypes
	Slide 33: Example: paper prototype
	Slide 34: Example: wireframe
	Slide 35: Example: mock-up
	Slide 36: Interactive prototypes
	Slide 37: Models
	Slide 38: Relating user and system models
	Slide 39: Model mismatches
	Slide 40: Model mismatches
	Slide 41: Model mismatches
	Slide 42: Model-view-controller (as a "model")
	Slide 43: Layer 0: Computer systems and networks
	Slide 44: Layer 1: Model
	Slide 45: Separation of content from view
	Slide 46: Separation of content from view
	Slide 47: Layer 2: Control (navigation)
	Slide 48: Layer 3: View (user interface)
	Slide 49: Design principles
	Slide 50: UI design principles
	Slide 51: Example considerations: navigation menus
	Slide 52: Design choices: text vs. graphics
	Slide 53: Command line interfaces
	Slide 54: Web and mobile interfaces
	Slide 55: Device-aware interfaces
	Slide 56: Web and mobile apps
	Slide 57: Leverage simulation
	Slide 58: Test for accessibility
	Slide 59: Responsive design
	Slide 60: Poll: Progressive enhancement
	Slide 61: Evaluation and user testing
	Slide 62: Analyze/design/build/evaluate loop
	Slide 63: Evaluation
	Slide 64: Standards for usability: ISO 9241:11
	Slide 65: Poll: Measuring usability
	Slide 66: User testing stages
	Slide 67: Preparation
	Slide 68: Participants
	Slide 69: Conducting sessions
	Slide 70: Analyzing results
	Slide 71: Example: Past CS 5150 methodology
	Slide 72: Example
	Slide 73: What we've found: Issue #1, Search Form Confusion!
	Slide 74: What we've found: Issue #2, Inconspicuous Edit/Confirmations!
	Slide 75: What we've found: Issue #3, Confirmation Terms
	Slide 76: What we've found: Issue #4, Entry Semantics
	Slide 77: What we've found: Issue #5, Search Results Disambiguation & Semantics
	Slide 78: Measurement-based evaluations
	Slide 79: Eye tracking
	Slide 80: Analyzing measurements
	Slide 81: Refining designs
	Slide 82: User testing in CS 5150
	Slide 83: Code tracing
	Slide 84: Techniques

