Wselection at the end -
» ob.select= 1 add «
* ob.select=1
-Scene.objects.actiw

Selected™ + str(modifies
Wirror_ob.select = 0

» bpy.context.selected
Mata.objects[one.name].se

L e Ct *Qtf =please select exacthy

.- OPERATOR CLASSES: ==

Code review

Administrative Reminders

e Peer reviews: Due Mar 7

* Presentation scheduling
* Schedule with client by March 25

* Report 3: Due Mar 21
* In-class exam 1: Thurs, Mar 27

Previously in 5150

* Version Control Systems
* Git Basics

* Branching
* Git/VCS Terms

Code reviews

Can we catch human errors?

Can we catch human error before we
ship our code?

Can we automate tasks to prevent
problems?

Approach

Automate what we can

Review what we cannot

Development processes

What is the number one thing a company can do to improve code quality? fig.4

Code Review

Unit Testing
Continuous Integration
Integration Testing
Detailed Requirements

Functional Testing ® 2020, N =542

Training/On-boarding ® 2019, N =860

Static Analysis 2018, N = 856

User Stories

Demo Days

The 2020 State of CodZ) Review,

Beyond quality
| often learn from others

when | participate in code

What do you think are the most important benefits of code review? reviews. fig. 12 N=674

fig.9 N=735

2%

Improved Software Quality

Sharing Knowledge Across the Team
Ability To Mentor Less-Experienced Developers
Adherence to Coding Standards/Conventions

Increased Collaboration

Reduced Project Time/Costs

Internal Audits

Ability to Comply with Regulatory Standards
Ability to Set Expectations

Enhanced Customer Satisfaction/Retention
Enhanced Mobility of Code

Strengthen Competitive Advantage

ISO/Industry Certifications @ Strongly Agree Disagree
@ Agree Strongly Disagree
@ Neutral

The 2020 State of Codg Review,

Code Review at Microsoft

Ranked Motivations From Developers

Top 1 Second [Third I

|
Finding defects | | -
Code Improvement | | R
|
|

Alternative Solutions

Knowledge Transfer

TeamAwareness| [| |G
Improving Dev Process :I:-
Share Code Ownership | [[[N

AvoidBuildBreaks | [[|
Track Rationale EI:-

Team Assessment | [[
0 200 400 600
Responses

Fig. 3. Developers’ motivations for code review.

Expectations, Outcomes, and Challenges of Modern Code Review. Bacchelli and Bird. ICSE 2013

Review spectrum

* Pair programming (XP) * Review all artifacts! (not just
 Lacks independence code)

» Tool-assisted peer review * "Ifitis worth writing down and
« Asynchronous keeping, itis worth reviewing"

* Leverage collaborative

* Postpones structured documents, "track changes", etc.
collaboration
* Formal inspections Requirements, architecture,
* Maximizes benefits design, test plan, test results,

ticket backlog, user manual,
presentation slides, marketing
materials, project plan, ...

* Expensive

10

Writing reviewable code

* Keep changes small e Style tips
* Clean branch history * Trailing commas (when allowed)
. Don't base on unmerged * Arguments on separate lines
branches * Autoformatting, static analysis
* Avoid intermediate back-merges) r';'stlztﬁ\éilzvﬁtfaffcus on content,
* Commits should be logical, self-
contained

* Don't mix reformatting,
refactoring, and functional
changes

11

Reviewing code

* Review in context of purpose
* |deally traced to a ticket
* Review documentation of context

* Understand existing code first

* Focus on correctness, broader
implications
* Hopefully leave details to tools

e Review testcases

* Ask questions, demand
clear answers

* Ensureissues are fully resolved
* Don't feel rushed/pressured

* Inspect the item, not the author
* Shared ownership of total product

* Justify defects, refrain from
neutral alternatives

 Allow author to decide how
defects are resolved

 Avoid debates

* If code is correct and consistent
with team guidelines, allow it

* If debate is necessary, resolve
synchronously, then summarize

 Use a checklist

12

Al-Based Code Review

* Github Copilot: https://github.blog/changelog/2024-10-29-
github-copilot-code-review-in-github-com-private-preview

e Other solutions:

* https://www.ibm.com/think/insights/ai-code-review (Watsonx)
 Code Rabbit: https://www.coderabbit.ai

* Can Al check for: Correctness, Security, Performance, ...7?
* Canitreplace static and dynamic analysis tools?

13

https://github.blog/changelog/2024-10-29-github-copilot-code-reviw-in-github-com-private-preview
https://github.blog/changelog/2024-10-29-github-copilot-code-reviw-in-github-com-private-preview
https://www.ibm.com/think/insights/ai-code-review
https://www.coderabbit.ai/

How to automate finding bugs?

Cl/CD Pipelines

* Continuous Integration/Continuous Delivery
 Catch mistakes before you push code

Code
Change I:> Run Tests I:>

Deploy
Code

Merge
Code

15

History of CI

* 1999: Extreme Programming (XP) rule: Integrate Often

* 2000: Martin Fowler posts “Continuous Integration” blog
* 2001: First Cl tool: Cruise Control

* 2005: Hudson/Jenkins £

*2011: Travis Cl
* 2019: Github Actions AT .
o Iravis Cl

GitHub >

Actions

Jenkins

16

Example CI/CD Pipeline

7) £
% - Q ol U S
COMMIT o REVIEW STAGING PRODUCTION
P O—0—0—-90—-90 - & 3] -
BUILD UNIT INTEGRATION
TESTS TESTS
@ CD PIPELINE
Cl PIPELINE
RELATED CODE

17

Cl can run static and dynamic analysis

R

~ Changes approved
1 approving review by reviewers with write access.

v/ 1approval »

2 1 pending review >

”™) All checks have passed

12 skipped, 77 successful checks

v &) Code scanning results f Code(QL Successful in 1s — No new alerts in code changed by this pull request
v €) CodeQL / Analyze (actions) (pull_request) Successful in 1m

v €) CodeQL / Analyze (javascript) (pull_request) Successfulin 1m

v €) CodeQL / Analyze (python) (pull_request) Successful in 5m

v G Mergeable Successful in 1s — Mergeable Run has been Completed!

v €) Tests /[Additional PROD image tests / Docker Compose quick start with PROD image verifying (pull_req...

v €) Tests / Additional PROD image tests / Test examples of PROD image building (pull_request) Successfuli...

+ €) Tests [Basic tests / Breeze unit tests (pull_request) Successful in 54s

s M Tt I Pmni; bmndn | Dimmmd L1l dmmdn fame]

https://github.com/apache/airflow/pull/47051

18

https://github.com/apache/airflow/pull/47051

Cl Configs: Demo

* Example for apache airflow
* https://github.com/apache/airflow/tree/main/.github/workflows

* Build and test java with maven

steps:
— uses: actions/checkout@v4
— uses: actions/setup-java@v4

with:
java-version: '17'
distribution: 'temurin'
— name: Run the Maven verify phase
run: mvn ——batch-mode —--update-snapshots verify

19

https://github.com/apache/airflow/tree/main/.github/workflows

Poll: PollEv.com/cs5150sp25

* You are working on a feature branch for a critical bug fix in a team
project. While developing, you realize that your current work is not
yet ready to be committed (unsaved). An urgent hotfix from the
main branch needs to be integrated into your feature branch. You

want to ensure your unfinished work remains intact during this

process.
* |dentify the git operation(s) you would use to solve this.

Coding Conventions

Beyond code review

* How to ensure a healthy body of source code and preserve quality
over time?
* Explicit style guides and rules
e Static analysis
* Continuous enforcement

22

Past CS 5150 advice

* Write simple code
* Avoid risky programming constructs
* If code is difficult to read, rewrite it

* Include runtime verification
* Verify class/data invariants after modification
* Verify preconditions for parameter values

* Eliminate all warnings from source code
* Have a thorough set of test cases

* Expectto take longer to write and test production codein a
production environment than in an academic one

24

Style guides

* https://google.github.io/styleguide/pyguide#38-comments-and-docstrings

Improve consistency of code

Avoid unproductive arguments

Guido van Rossum: Code is read much more than it is written!
Linters: Black (python), Eslint (JS), CPPLint, Checkstyle (Java)

https://google.github.io/styleguide/cppguide.html#Comments

https://google.github.io/styleguide/javaguide.html#s/-javadoc
https://www.pvthon.org/dev/peps/pep-0008

https://github.com/airbnb/javascript

Linux kernel style guide

25

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/pyguide
https://google.github.io/styleguide/javaguide.html
https://www.python.org/dev/peps/pep-0008
https://github.com/airbnb/javascript
https://www.kernel.org/doc/html/latest/process/coding-style.html

Who writes style guides?

* (ad hoc) Self-proclaimed code protectors
* (wisdom) Team veteran developers
(

* (copy-paste) Google search for blog posts by
experts

* (empirical study) Evidence-based analysis of code
styles that correlate with bugs

26

Static analysis

* Checks that can be done on the source code (without running it)
* Syntax errors during compilation
* Linters & compiler warnings
e Style checks
 Complexity measurement

* Notable tools
e clang-static-analyzer (C++)
* Semgrep, ErrorProne (Java), CodeQL
 SonarQube

* Keep false positives low (ideally zero)
* Allows checks to be run continuously without risking desensitization

27

What bugs can static analysis find?

* Dead code
* Many subtle ways to introduce (bad ordering of if-statements, poorly-scoped early returns)

* Typosin names (indicated by unused parameters)

* Misleading indentation

* Unintentional overloads, risky implicit conversions (abs vs. std::abs)
* Unhandled cases, unintended fallthrough in switch statements

* Use of deprecated functionality

* Common mistakes
 Using ==when operand types override equals()
* delete vs. delete]]

* Missing null pointer checks

28

Style automation

Advantages
e Zero human effort

e Uniform enforcement

* Prevent accidentally
misleading style

 Can be applied after
refactoring, synthesizing code

 Can update entire codebase
when style rules change

Disadvantages

* Can'treproduce all reasonable
style rules

* Special-case exceptions are
awkward

* Reformatting pollutes blame
history

29

Discuss: Review this piece of code!

userManager A
List<String> users;
int maxUsers;
userManager(int capacity, String
name) {
users
maxuUsers

}

ArrayList<>();
capacity;

void adduser(String username) {
(users.contains(username)) {

System.out.println("User already
exists"); ;

}

(users.size()
users.remove(9);

}

users.add(username);

}

maxUsers) {

boolean removeUser(String username) {
users.remove(username);
void printUsers() {
(String user: users) {
System.out.printin(user);

(user.startsWith("A")) {
users.remove(user);

Bugs

* No Null Checks in addUsers

* Case sensitive comparison of user name
* No input validation or sanitization

* Unsafe list manipulation

* Concurrent Modification of List

* Conventions: Inconsistent case for identifiers, unused parameters

Resources

* Read Software Engineering at Google:
* Chapter 8: Style Guides and Rules
 Chapter 9: Code Review

* For more on version control, read:
* Chapter 16: Version Control and Branch Management

35

	Slide 1: Lecture 12: Code review
	Slide 2: Administrative Reminders
	Slide 3: Previously in 5150 ….
	Slide 4: Code reviews
	Slide 5: Can we catch human errors?
	Slide 6: Approach
	Slide 7: Development processes
	Slide 8: Beyond quality
	Slide 9: Code Review at Microsoft
	Slide 10: Review spectrum
	Slide 11: Writing reviewable code
	Slide 12: Reviewing code
	Slide 13: AI-Based Code Review
	Slide 14: How to automate finding bugs?
	Slide 15: CI/CD Pipelines
	Slide 16: History of CI
	Slide 17: Example CI/CD Pipeline
	Slide 18: CI can run static and dynamic analysis
	Slide 19: CI Configs: Demo
	Slide 20: Poll: PollEv.com/cs5150sp25
	Slide 21: Coding Conventions
	Slide 22: Beyond code review
	Slide 24: Past CS 5150 advice
	Slide 25: Style guides
	Slide 26: Who writes style guides?
	Slide 27: Static analysis
	Slide 28: What bugs can static analysis find?
	Slide 29: Style automation
	Slide 30: Discuss: Review this piece of code!
	Slide 31: Bugs
	Slide 35: Resources

