
CS 5150, Spring 2025

Lecture 12:
Code review

1

Administrative Reminders

• Peer reviews: Due Mar 7
• Presentation scheduling

• Schedule with client by March 25

• Report 3: Due Mar 21
• In-class exam 1: Thurs, Mar 27

Previously in 5150 ….

• Version Control Systems
• Git Basics
• Branching
• Git/VCS Terms

Code reviews

4

Can we catch human errors?

Can we catch human error before we
ship our code?

Can we automate tasks to prevent
problems?

5

Approach

Automate what we can

Review what we cannot

6

The 2020 State of Code Review,
SmartBear

Development processes

7

Beyond quality

The 2020 State of Code Review,
SmartBear

8

Code Review at Microsoft

9Expectations, Outcomes, and Challenges of Modern Code Review. Bacchelli and Bird. ICSE 2013

Review spectrum

• Pair programming (XP)
• Lacks independence

• Tool-assisted peer review
• Asynchronous
• Postpones structured

collaboration
• Formal inspections

• Maximizes benefits
• Expensive

• Review all artifacts! (not just
code)
• "If it is worth writing down and

keeping, it is worth reviewing"
• Leverage collaborative

documents, "track changes", etc.

• Requirements, architecture,
design, test plan, test results,
ticket backlog, user manual,
presentation slides, marketing
materials, project plan, ...

10

Writing reviewable code

• Keep changes small
• Clean branch history

• Don't base on unmerged
branches

• Avoid intermediate back-merges
• Commits should be logical, self-

contained

• Don't mix reformatting,
refactoring, and functional
changes

• Style tips
• Trailing commas (when allowed)
• Arguments on separate lines
• Autoformatting, static analysis

• Help reviewer focus on content,
not style/syntax

11

Reviewing code

• Review in context of purpose
• Ideally traced to a ticket
• Review documentation of context

• Understand existing code first
• Focus on correctness, broader

implications
• Hopefully leave details to tools

• Review testcases
• Ask questions, demand

clear answers
• Ensure issues are fully resolved

• Don't feel rushed/pressured

• Inspect the item, not the author
• Shared ownership of total product

• Justify defects, refrain from
neutral alternatives

• Allow author to decide how
defects are resolved

• Avoid debates
• If code is correct and consistent

with team guidelines, allow it
• If debate is necessary, resolve

synchronously, then summarize
• Use a checklist

12

AI-Based Code Review

• Github Copilot: https://github.blog/changelog/2024-10-29-
github-copilot-code-review-in-github-com-private-preview

• Other solutions:
• https://www.ibm.com/think/insights/ai-code-review (Watsonx)
• Code Rabbit: https://www.coderabbit.ai

• Can AI check for: Correctness, Security, Performance, …?
• Can it replace static and dynamic analysis tools?

13

https://github.blog/changelog/2024-10-29-github-copilot-code-reviw-in-github-com-private-preview
https://github.blog/changelog/2024-10-29-github-copilot-code-reviw-in-github-com-private-preview
https://www.ibm.com/think/insights/ai-code-review
https://www.coderabbit.ai/

How to automate finding bugs?

14

CI/CD Pipelines

• Continuous Integration/Continuous Delivery
• Catch mistakes before you push code

15

Code
Change Run Tests Merge

Code

Deploy
Code

History of CI

• 1999: Extreme Programming (XP) rule: Integrate Often
• 2000: Martin Fowler posts “Continuous Integration” blog
• 2001: First CI tool: Cruise Control
• 2005: Hudson/Jenkins
• 2011: Travis CI
• 2019: Github Actions

16

Example CI/CD Pipeline

17

CI can run static and dynamic analysis

18
https://github.com/apache/airflow/pull/47051

https://github.com/apache/airflow/pull/47051

CI Configs: Demo

• Example for apache airflow
• https://github.com/apache/airflow/tree/main/.github/workflows
• Build and test java with maven

19

https://github.com/apache/airflow/tree/main/.github/workflows

Poll: PollEv.com/cs5150sp25

• You are working on a feature branch for a critical bug fix in a team
project. While developing, you realize that your current work is not
yet ready to be committed (unsaved). An urgent hotfix from the
main branch needs to be integrated into your feature branch. You
want to ensure your unfinished work remains intact during this
process.

• Identify the git operation(s) you would use to solve this.

Coding Conventions

21

Beyond code review

• How to ensure a healthy body of source code and preserve quality
over time?
• Explicit style guides and rules
• Static analysis
• Continuous enforcement

22

Past CS 5150 advice

• Write simple code
• Avoid risky programming constructs
• If code is difficult to read, rewrite it
• Include runtime verification

• Verify class/data invariants after modification
• Verify preconditions for parameter values

• Eliminate all warnings from source code
• Have a thorough set of test cases
• Expect to take longer to write and test production code in a

production environment than in an academic one

24

Style guides

• Improve consistency of code
• Avoid unproductive arguments
• Guido van Rossum: Code is read much more than it is written!
• Linters: Black (python), Eslint (JS), CPPLint, Checkstyle (Java)

• https://google.github.io/styleguide/cppguide.html#Comments
• https://google.github.io/styleguide/pyguide#38-comments-and-docstrings
• https://google.github.io/styleguide/javaguide.html#s7-javadoc
• https://www.python.org/dev/peps/pep-0008

• https://github.com/airbnb/javascript

• Linux kernel style guide

25

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/pyguide
https://google.github.io/styleguide/javaguide.html
https://www.python.org/dev/peps/pep-0008
https://github.com/airbnb/javascript
https://www.kernel.org/doc/html/latest/process/coding-style.html

Who writes style guides?

• (ad hoc) Self-proclaimed code protectors
• (wisdom) Team veteran developers
• (copy-paste) Google search for blog posts by

experts
• (empirical study) Evidence-based analysis of code

styles that correlate with bugs

26

Static analysis

• Checks that can be done on the source code (without running it)
• Syntax errors during compilation
• Linters & compiler warnings
• Style checks
• Complexity measurement

• Notable tools
• clang-static-analyzer (C++)
• Semgrep, ErrorProne (Java), CodeQL
• SonarQube

• Keep false positives low (ideally zero)
• Allows checks to be run continuously without risking desensitization

27

What bugs can static analysis find?

• Dead code
• Many subtle ways to introduce (bad ordering of if-statements, poorly-scoped early returns)

• Typos in names (indicated by unused parameters)
• Misleading indentation
• Unintentional overloads, risky implicit conversions (abs vs. std::abs)
• Unhandled cases, unintended fallthrough in switch statements
• Use of deprecated functionality
• Common mistakes

• Using == when operand types override equals()
• delete vs. delete[]

• Missing null pointer checks
• ...

28

Style automation

Advantages
• Zero human effort
• Uniform enforcement
• Prevent accidentally

misleading style
• Can be applied after

refactoring, synthesizing code
• Can update entire codebase

when style rules change

Disadvantages
• Can't reproduce all reasonable

style rules
• Special-case exceptions are

awkward
• Reformatting pollutes blame

history

29

Discuss: Review this piece of code!
public class userManager {
private List<String> users;
private int maxUsers;
public userManager(int capacity, String
name) {
users = new ArrayList<>();
maxUsers = capacity;
}
public void adduser(String username) {
if (users.contains(username)) {
System.out.println("User already
exists"); return;
}
if (users.size() >= maxUsers) {
users.remove(0);
}
users.add(username);
}

public boolean removeUser(String username) {
return users.remove(username);
}

public void printUsers() {

for (String user: users) {

System.out.println(user);

if (user.startsWith("A")) {
users.remove(user);
}
}
}

Bugs

• No Null Checks in addUsers
• Case sensitive comparison of user name
• No input validation or sanitization
• Unsafe list manipulation
• Concurrent Modification of List

• Conventions: Inconsistent case for identifiers, unused parameters

Resources

• Read Software Engineering at Google:
• Chapter 8: Style Guides and Rules
• Chapter 9: Code Review

• For more on version control, read:
• Chapter 16: Version Control and Branch Management

35

	Slide 1: Lecture 12: Code review
	Slide 2: Administrative Reminders
	Slide 3: Previously in 5150 ….
	Slide 4: Code reviews
	Slide 5: Can we catch human errors?
	Slide 6: Approach
	Slide 7: Development processes
	Slide 8: Beyond quality
	Slide 9: Code Review at Microsoft
	Slide 10: Review spectrum
	Slide 11: Writing reviewable code
	Slide 12: Reviewing code
	Slide 13: AI-Based Code Review
	Slide 14: How to automate finding bugs?
	Slide 15: CI/CD Pipelines
	Slide 16: History of CI
	Slide 17: Example CI/CD Pipeline
	Slide 18: CI can run static and dynamic analysis
	Slide 19: CI Configs: Demo
	Slide 20: Poll: PollEv.com/cs5150sp25
	Slide 21: Coding Conventions
	Slide 22: Beyond code review
	Slide 24: Past CS 5150 advice
	Slide 25: Style guides
	Slide 26: Who writes style guides?
	Slide 27: Static analysis
	Slide 28: What bugs can static analysis find?
	Slide 29: Style automation
	Slide 30: Discuss: Review this piece of code!
	Slide 31: Bugs
	Slide 35: Resources

