ecture 9:

C
20
g
Q
)
-
Q)
—
Q0
O
Nl
QO

Administrative reminders

* Assignment A2 due today

* Report #2 due Feb 28: progress, milestones, deliverables, architecture
 Don’t forget to set up meeting with your client

* Assignment A3 coming soon

Previously on 5150...

Design steps

e Given requirements, must * Ideal: requirements are
a system to meet them independent of design (avoid
* System architecture implementation bias)
’ UserEXperief‘CE * Reality: working on design
* Program design clarifies requirements

 Methodology should allow
feedback (strength of iterative &
agile methods)

Design principles

* Design is an especially creative e Strive for

part of the software « Use modeling, abstraction to

development process (hopefully) find simple ways to
achieve complex requirements

e Designs should be easy to
implement, test, and maintain

e More a "craft" than a science

* Many tools are available; must
select appropriate ones for a given

project e Easy to use correctly, hard to use
incorrectly

* Low coupling, high cohesion

Client/Server

 Control flow in client and server
are independent

e Communication follows a
protocol

* If protocol is fixed, either side
can be replaced independently

* Peer-to-peer: same component
can act as both client and server

Mail client
(e.g. MacMail)

Mail server
(e.g. Gmail)

Client 1 Client 2 Client 3

N

Internet

L]

Catalog Video Picture
server server server
Library Film store Photo store

catalogue

Client 4

|
|

Web
server

Film and
photo info.

Layered Architecture

 Partition subsystems into stack
of layers

* Layer provides services to layer User interface
directly above

* Layer relies on services to layer
directly below

User interface management
Authentication and authorization

Core business logic/application functionality

* Advantage: constrains coupling System utilties

* Danger: leaky abstractions
 Clear separation is difficult

* May need services of multiple
lower layers

* Performance

System support (OS, database etc.)

. 7, :
Sommerville, Software Engineering

Pipe and Filter

* Transformation components
process inputs to produce outputs

* Subsystems coupled via data
exchange

 Good match for data flow models

* May be dynamically assembled
* Limited user interaction

* Applications:
* Compilers
* Graphics shaders
* Signal processing

* Caveats:

 Awkward to handle events
(interactive systems)

e Rate mismatches if branches merge

Read issued Identify
invoices payments

A

A

Invoices

Payments

L 3

Issue
— > -
receipts

)

Receipts

Find
payments
due

Issue
payment
reminder

Reminders

Repository

* Couple subsystems via shared data

* Repository may need to support atomic

transactions

* Advantages:

 Components are independent (low
coupling)

* Centralized state storage (good for
backups)

* Changes propagated easily

* Dangers:
* Bottleneck / single point of failure

components

Input

Transactions

!

Repository

Model-View-Controller

* Beware: many variations

 Some are . system-level responsibilities partitioned into
different components
* Example: Play Framework for building web apps
e Some are : functionality divided between different
classes
* Focus on reusable controls
Example: Swing widgets
Variation on which logic is widget-level vs. form-level (MVC vs. MVP)
Variation on which classes communicate directly (MVC vs. MVA)
Variations in model storage (domain objects, DB record sets, immutable store)

Read more: https://martinfowler.com/eaaDev/uiArchs.html

https://martinfowler.com/eaaDev/uiArchs.html

Component diagram

s

Model
State State
query change
v .
% View control %
—
View Controller g

>

External
services

Publish-subscribe

Sub-system Sub-system Sub-system
1 2 3

Y

Sub-system
4
I

Event and message handler

 Event-driven control

e Application responds to external stimuli and timeouts

 No centralized orchestration

* Very loose coupling — components communicate via message broker
* Easy to extend
 Difficult to analyze (observer pattern)

No control over what (if any) code responds to an event

Potential for conflicts (multiple components respond in incompatible ways)

Potential for silently dropped events
Call stacks may not reflect causality

Deployment concerns

» Dependency conflicts
e Configuration, data sprawl
e OS portability

* Unintended interactions
* Filesystem has same problems as global variables

e Solution: : but...
* Deploying on separate machines risks under-utilization

Virtual machines

* Multiple OS instances running on one machine
* Real hardware is managed by host OS or hypervisor

* Improves hardware utilization, reduces cost
* Avoids energy consumption by redundant hardware

 Stateful — still risks data sprawl
 Address with automated administration

* High overhead — software redundancy

 Examples: VMware, VirtualBox, Xen, Hyper-V

Containers

* Trade OS heterogeneity for reduced redundancy

e Still isolate filesystem, network without duplicating OSd

ocker

* Lightweight — new instances start quickly
* Improves elasticity

* Often encapsulates a single application
e Often treated as stateless (don't write to filesystem)

* Examples: Docker, LXC

15

"Serverless"

 Computation nodes are stateless, ephemeral, and event-triggered
» Data store services still persist state, but are application-agnostic

* Application decomposed into event-handler functions < >
e Event dispatch, container lifetime managed by platform

 Examples: Amazon Lambda, Azure Functions

Azure Functions

@ﬂ @ o) ZR
Amazon 53 @ AWS Lambda @f AWS Lambda

Photo is uploaded ambda is X
Photograph is taken to an S3 Bucket riggered La”:gg:i:;”:o'ggage

.

Photo is resized into web,
mobile, and tablet sizes

https://martinfowler.com/articles/serverless.html 16

Three-tier vs. serverless

Authentication
Service

Purchase
Database

D

Product
Database

17
https://martinfowler.com/articles/serverless.html

https://martinfowler.com/articles/serverless.html

Microservices

* Components encapsulate services and expose them via standard
interfaces. Are ideally binary-replaceable

* In practice, many frameworks for managing modular applications are language-
specific (e.g., OSGi for Java)

* OOP abstractions like objects, methods are complicated at language boundaries and
distributed deployment

* Microservices constrain component definition to reduce coupling

* Language-agnostic protocols (e.g., RESTful HTTP)
* Independently deployable

* Advantage: More scalable, fault tolerant, rapid roll out

* Disadvantage: Complex monitoring, more points of failure, network delays,
testing is challenging

* Examples: Netflix, Amazon, Uber

Design steps

e Given requirements, must * Ideal: requirements are
a system to meet them independent of design (avoid
* System architecture implementation bias)
* User experience * Reality: working on design
* Program design clarifies requirements

 Methodology should allow
feedback (strength of iterative &
agile methods)

Lecture goals: Program Design

* Distinguish between heavyweight and lightweight design processes
* Document static and dynamic designs using UML diagrams

* Leverage design patterns to reuse solutions to common problems

Program design models

Heavyweight vs. Lightweight design

Heavyweight Lightweight
* Program design and coding are * Program design and coding are
Sepad rate interwoven
* Use models to specify program in * Development is iterative
detail, before beginning to code e Assisted by integrating multiple
 UML provides modeling notation development tools (IDEs)

Mixed approach
 Use models to specify outline design

 Work out details iteratively during coding

Program design

* Goal: represent software architecture in form that can be
implemented as one or more executable programs

* Specifies:
* Programs, components, packages, classes, class hierarchies
* Interfaces, protocols
* Algorithms, data structures, security mechanisms, operational procedures

* Historically (e.g. aerospace), program design done by domain
engineers, implementation done by programmers

UML models for design

give general overview
* Principal elements
* Relationships between elements

provide details about each element

In a heavyweight process, specifications should have sufficient detail so
that corresponding code can be written unambiguously. Ideally,
specification is complete before coding begins.

UML model choices

* Requirements
* Use case diagram: use cases, actors, and relationships

 Architecture

 Component diagram: interfaces and dependencies between components

* Deployment diagram: configuration of processing nodes and the components
that execute on them

* Program design

 Class diagram (structural): classes, interfaces, collaborations, and
relationships

e Sequence diagram (dynamic): set of objects and their relationships

Class diagram

: Set of objects with
the same attributes,

operations, relationships, = window name
and Semantics origin attributes [local, instance, and class
sizeg (static) variables]
open()
 "Operation" = "method" | closel methods
move()
display()

responsibilities [optional text]

26

Example: Hello World applet

import java.applet.Applet;
import java.awt.Graphics;
class HellolWorld extends Applet {
public void paint(Graphics g) { name
g.drawString("Hello!", 10, 20);

) methods

class

HelloWorld

paint()

27

Annotations

hame

methods

class

HelloWorld

paint()

optional annotation

g.drawString("Hello!", 10, 20)

28

Relationships

* Association: show multiplicity of

links between instances of Consultant
classes "1 referred-to
. . . 1.*
 Analogous to relations in entity- T 1.]
. g . y Condition Patient Getr)tgral
relation diagrams diognosed- | referred-by | Practitioner
wit Jx
 Bidirectional — doesn't imply | |2ttends
] . N
OwnerShlp or CompOSItlon Consultation lirescrl e: . Medication
runs prescribes
0.1 * 1.4 - Treatment
Hospital "
employer employee Doctor

Sommerville, Software Engineering, Tenth Edition,z%igu re 5.9

Relationships

* Dependency

* A change to one class may affect
the semantics of another

* Generalization (inheritance)

e Objects of a specialized (child)
class are substitutable for objects
of a generalized (parent) class

child

* Realization (interfaces)

* A class is guaranteed to fulfil a
contract specified by another class

30

Relationships

* Aggregation

* An instance of one class (the
whole) is composed of objects of

other classes (the parts) Patient record
* To reduce coupling, prefer 1 1
composition over inheritance 1 1 %
Patient Consultation

Sommerville, Software Engineering, Tenth Edition, Eilgu re 5.13

HelloWorld relationships

«interface»
MenuContainer

PollEv.com/cs5150sp25

HelloWorld

e Graphics

paint()

32

Rational Rose

4> Rational Rose - samplel

File Edit Miew Format Browse Report

window Help

=13l x|

DEE BB/ EPOepRRB | Felaaqn

(5 zamplel

=77 Use Case Yiew
@ M ain

> MewllzeCaze
—>>) Azzociations
27 Logical View
Main

A-E Claim

H-B Accident

iy T
Fl- =%, Aszzociahions

23 Companent \iew

I ain

@ MHewComponent
..... Deployrment YWiew
--{28] Madel Properties

---/ [thedccident Accident) [theClaim: Claim]

&
BT
=

EEREERUE EADE

Class Diagram: Logical ¥iew

Claim

&amnunt

Accident

date_investigated

®change_date()
investigate_claimi)

&date_nccured

Edriver

Esdriver2

%change_date()
®add_driver1 ()
®add_driver2()

For Help, press F1

|Default Language: Java

33

Rational Rose

i 3 4 Class Specification 2| x|

4 Class Specification

Class IJavadu:ucI Class Jawadoc

Tl @authar @version
Mame |BEI Generate—————
2 | =] =]
[~ Finalizer
Modifiers
[Static Iritializer =5 -
Wisibility ™ abswact [static =l =l
Iﬁ - - ™ Instance Initializer
Liblic W final trictf,
E i Sl Iw Default Constructar |@SEE
[Interface
¥ Generate Code ™ Disable Autosync [Reference
Constructar Visibility I public j'
|E:-:tends |jm|:n|ements Esince _I (@deprecated _I
Uszer Defined Tag
Tag name | Default |
DocComment
;I Preview |

0k I Cancel Apply | Help | 1]4 I Cancel Lpply | Help

Lightweight design

* Less detail * Leverage tooling and modern
* Only show "interesting" behaviors languages
and attributes with ownership * Generate diagrams from source code
significance * Generate specifications from
* Less permanent comments
* May only exist on whiteboard during * IDEs highlight attributes and methods

design brainstorming

* Reduces maintenance of keeping : : s
documents in-sync with code e Still need deSIgn activities,

« Less sequential documentation to be successful

* Only design what you need for
current task

* Use lessons from implementation to
iterate on designs

https://vtk.org/doc/nightly/html/classvtk3DWidget.html

https://vtk.org/doc/nightly/html/classvtk3DWidget.html

Class design

Given a real-life system, how do you decide which classes to use?

» Step 1: Identify set of candidate classes
 What terms do users and implementers use to describe the system?
* |s each candidate class crisply defined?
 What are the candidate classes' responsibilities? Are they balanced?

* What attributes and methods does each class need to carry out its
responsibilities?

Class design

» Step 2: Refine list of classes

* Improve clarity of design
* Increase cohesion within classes, reduce coupling between classes

Application and solution classes

* Application classes represent application concepts.
* Use Noun Identification to generate candidate application classes

* Solution classes represent system concepts
* User interface objects, databases, etc.

Example: noun identification

The library contains books and journals. It may have several copies of a
given book. Some of the books are reserved for short-term loans only. All
others may be borrowed by any library member for three weeks.
Members of the library can normally borrow up to six items at a time, but
members of staff may borrow up to 12 items at one time. Only members

of staff may borrow journals.

The system must keep track of when books and journals are borrowed

and returned, and enforce the rules.

39

Example: Candidate classes

Noun

Comments

Candidate

Library

Book

Journal

Copy
ShortTermLoan
LibraryMember
Week
MemberOfLibrary
ltem

Time
MemberOfStaff
System

Rule

40

Example: Candidate classes

Noun Comments Candidate
Library the name of the system no
Book yes
Journal yes
Copy yes
ShortTermLoan event no (?)
LibraryMember yes
Week measure no
MemberOfLibrary repeat of LibraryMember no
ltem book or journal yes (?)
Time abstract term no
MemberOfStaff yes
System general term no
Rule general term no

41

Example: Candidate relations

Book IS an ltem
Journal IS an ltem
Copy is a copy of a Book
LibraryMember

Item

MemberOfStaff IS a LibraryMember

Example: candidate methods

Li
Li

oraryMem

oraryMem

per

oer

MemberOfStaff
MemberOfStaff

borrows
returns
borrows

returns

Copy

Copy
Journal

Journal

Example: candidate class diagram

MemberOfStaff LibraryMember
4|>
1 1
on loan on loan
k
0..12 0..
Journal Copy _
is a copy of

Book

1..* 1

44

Moving towards final design

Reuse: Wherever possible use existing components, or class libraries
* They may need extensions.

Restructuring: Change the design to improve understandability, maintainability
* Merge similar classes, split complex classes

Optimization: Ensure that the system meets anticipated performance
requirements
* Change algorithms, more restructuring

Completion: Fill all gaps, specify interfaces, etc.

Design is iterative

* Asthe process moves from preliminary design to specification,
implementation, and testing it is common to find weaknesses in the program
design. Be prepared to make major modifications.

1 rule of class design

 Classes should be easy to use correctly and hard to use incorrectly
» See Effective C++, Third Edition

e Other good rules of thumb:
* Avoid cyclic dependencies (tight coupling)

Modeling dynamic aspects of systems

* Interaction diagrams: show a set of objects and their relationships
* Includes messages sent between objects

* Sequence diagrams: time ordering of messages

Object notation

Classes Objects
AnyClass anObject:AnyClass
attributel
attribute2 or
method1() :AnyClass
method?2()

or
or anObject

AnyClass

The names of objects are underlined.

48

Message notation

call

return
send
create object

destroy object

returnCopy(c)
>
okToBorrow() local
4_
status
——————— >
notifyReturn(b) > asynchronous signal
> synchronous signal
<<create>>
>
stereotypes
<<destroy>>

4

49

Example: Changing student program

o]

/\ MEngStudent
Cornellian :
— I
1: getName() '
1.1 : name
< _____________

]
2: <<create>> PhDStuglent(name)

3: <<destroy>>

"X

>

‘PhDStudent

50

Poll: PollEv.com/cs5150sp25

information system

:SatComms ‘WeatherStation ‘Commslink :WeatherData

(A) ;
request (report) |

>0

acknowledge

reportWeather ()\
7

(B) .
< acknowledge | | get (summary) o summarize 0 ii:|
<_ ______
SRR U
send (report) '
(D) acknowledge
reply (report) | — — — — — -

knowled
| acknowledge |

A
o

Sommerville, Software Engineering, Tenth Edition,s%:igu re 7.7

	Slide 1: Lecture 9: Program Design
	Slide 2: Administrative reminders
	Slide 3: Previously on 5150…
	Slide 4: Design steps
	Slide 5: Design principles
	Slide 6: Client/Server
	Slide 7: Layered Architecture
	Slide 8: Pipe and Filter
	Slide 9: Repository
	Slide 10: Model-View-Controller
	Slide 11: Component diagram
	Slide 12: Publish-subscribe
	Slide 13: Deployment concerns
	Slide 14: Virtual machines
	Slide 15: Containers
	Slide 16: "Serverless"
	Slide 17: Three-tier vs. serverless
	Slide 18: Microservices
	Slide 19: Design steps
	Slide 20: Lecture goals: Program Design
	Slide 21: Program design models
	Slide 22: Heavyweight vs. Lightweight design
	Slide 23: Program design
	Slide 24: UML models for design
	Slide 25: UML model choices
	Slide 26: Class diagram
	Slide 27: Example: Hello World applet
	Slide 28: Annotations
	Slide 29: Relationships
	Slide 30: Relationships
	Slide 31: Relationships
	Slide 32: HelloWorld relationships
	Slide 33: Rational Rose
	Slide 34: Rational Rose
	Slide 35: Lightweight design
	Slide 36: Class design
	Slide 37: Class design
	Slide 38: Application and solution classes
	Slide 39: Example: noun identification
	Slide 40: Example: Candidate classes
	Slide 41: Example: Candidate classes
	Slide 42: Example: Candidate relations
	Slide 43: Example: candidate methods
	Slide 44: Example: candidate class diagram
	Slide 45: Moving towards final design
	Slide 46: #1 rule of class design
	Slide 47: Modeling dynamic aspects of systems
	Slide 48: Object notation
	Slide 49: Message notation
	Slide 50: Example: Changing student program
	Slide 51: Poll: PollEv.com/cs5150sp25

