
Lecture 9:
Program Design

CS 5150, Spring 2025

1

Administrative reminders

• Assignment A2 due today

• Report #2 due Feb 28: progress, milestones, deliverables, architecture

• Don’t forget to set up meeting with your client

• Assignment A3 coming soon

2

Previously on 5150…

3

Design steps

• Given requirements, must
design a system to meet them

• System architecture

• User experience

• Program design

• Ideal: requirements are
independent of design (avoid
implementation bias)

• Reality: working on design
clarifies requirements

• Methodology should allow
feedback (strength of iterative &
agile methods)

4

Design principles

• Design is an especially creative
part of the software
development process

• More a "craft" than a science

• Many tools are available; must
select appropriate ones for a given
project

• Strive for simplicity
• Use modeling, abstraction to

(hopefully) find simple ways to
achieve complex requirements

• Designs should be easy to
implement, test, and maintain

• Easy to use correctly, hard to use
incorrectly

• Low coupling, high cohesion

5

Client/Server

• Control flow in client and server
are independent

• Communication follows a
protocol

• If protocol is fixed, either side
can be replaced independently

• Peer-to-peer: same component
can act as both client and server

 il client
 e g c il

 il ser er
 e g m il

6

Layered Architecture

• Partition subsystems into stack
of layers

• Layer provides services to layer
directly above

• Layer relies on services to layer
directly below

• Advantage: constrains coupling

• Danger: leaky abstractions
• Clear separation is difficult

• May need services of multiple
lower layers

• Performance 7
Sommerville, Software Engineering

Pipe and Filter

• Transformation components
process inputs to produce outputs

• Subsystems coupled via data
exchange

• Good match for data flow models
• May be dynamically assembled
• Limited user interaction

• Applications:
• Compilers
• Graphics shaders
• Signal processing

• Caveats:
• Awkward to handle events

(interactive systems)
• Rate mismatches if branches merge

8

Repository

• Couple subsystems via shared data
• Repository may need to support atomic

transactions

• Advantages:
• Components are independent (low

coupling)
• Centralized state storage (good for

backups)
• Changes propagated easily

• Dangers:
• Bottleneck / single point of failure

 epository

 nput
components

 r ns c ons

9

Model-View-Controller

• Beware: many variations
• Some are architectural styles: system-level responsibilities partitioned into

different components
• Example: Play Framework for building web apps

• Some are program design patterns: functionality divided between different
classes

• Focus on reusable controls

• Example: Swing widgets

• Variation on which logic is widget-level vs. form-level (MVC vs. MVP)

• Variation on which classes communicate directly (MVC vs. MVA)

• Variations in model storage (domain objects, DB record sets, immutable store)

10

Read more: https://martinfowler.com/eaaDev/uiArchs.html

https://martinfowler.com/eaaDev/uiArchs.html

Component diagram

11

Publish-subscribe

• Event-driven control
• Application responds to external stimuli and timeouts

• No centralized orchestration

• Very loose coupling – components communicate via message broker
• Easy to extend

• Difficult to analyze (observer pattern)
• No control over what (if any) code responds to an event

• Potential for conflicts (multiple components respond in incompatible ways)

• Potential for silently dropped events

• Call stacks may not reflect causality

12

Deployment concerns

• Dependency conflicts

• Configuration, data sprawl

• OS portability

• Unintended interactions
• Filesystem has same problems as global variables

• Solution: Encapsulation; but...
• Deploying on separate machines risks under-utilization

13

Virtual machines

• Multiple OS instances running on one machine
• Real hardware is managed by host OS or hypervisor

• Improves hardware utilization, reduces cost
• Avoids energy consumption by redundant hardware

• Stateful – still risks data sprawl
• Address with automated administration

• High overhead – software redundancy

• Examples: VMware, VirtualBox, Xen, Hyper-V

14

Containers

• Trade OS heterogeneity for reduced redundancy

• Still isolate filesystem, network without duplicating OS

• Lightweight – new instances start quickly
• Improves elasticity

• Often encapsulates a single application

• Often treated as stateless (don't write to filesystem)

• Examples: Docker, LXC

15

"Serverless"

• Computation nodes are stateless, ephemeral, and event-triggered
• Data store services still persist state, but are application-agnostic

• Application decomposed into event-handler functions
• Event dispatch, container lifetime managed by platform

• Examples: Amazon Lambda, Azure Functions

16https://martinfowler.com/articles/serverless.html

Three-tier vs. serverless

https://martinfowler.com/articles/serverless.html
17

https://martinfowler.com/articles/serverless.html

Microservices

• Components encapsulate services and expose them via standard
interfaces. Are ideally binary-replaceable

• In practice, many frameworks for managing modular applications are language-
specific (e.g., OSGi for Java)

• OOP abstractions like objects, methods are complicated at language boundaries and
distributed deployment

• Microservices constrain component definition to reduce coupling
• Language-agnostic protocols (e.g., RESTful HTTP)
• Independently deployable

• Advantage: More scalable, fault tolerant, rapid roll out
• Disadvantage: Complex monitoring, more points of failure, network delays,

testing is challenging
• Examples: Netflix, Amazon, Uber

18

Design steps

• Given requirements, must
design a system to meet them

• System architecture

• User experience

• Program design

• Ideal: requirements are
independent of design (avoid
implementation bias)

• Reality: working on design
clarifies requirements

• Methodology should allow
feedback (strength of iterative &
agile methods)

19

Lecture goals: Program Design

• Distinguish between heavyweight and lightweight design processes

• Document static and dynamic designs using UML diagrams

• Leverage design patterns to reuse solutions to common problems

20

Program design models

21

Heavyweight vs. Lightweight design

Heavyweight

• Program design and coding are
separate

• Use models to specify program in
detail, before beginning to code

• UML provides modeling notation

Lightweight

• Program design and coding are
interwoven

• Development is iterative

• Assisted by integrating multiple
development tools (IDEs)

Mixed approach

• Use models to specify outline design
• Work out details iteratively during coding

22

Program design

• Goal: represent software architecture in form that can be
implemented as one or more executable programs

• Specifies:
• Programs, components, packages, classes, class hierarchies
• Interfaces, protocols
• Algorithms, data structures, security mechanisms, operational procedures

• Historically (e.g. aerospace), program design done by domain
engineers, implementation done by programmers

23

UML models for design

• Diagrams give general overview
• Principal elements

• Relationships between elements

• Specifications provide details about each element

In a heavyweight process, specifications should have sufficient detail so
that corresponding code can be written unambiguously. Ideally,
specification is complete before coding begins.

24

UML model choices

• Requirements
• Use case diagram: use cases, actors, and relationships

• Architecture
• Component diagram: interfaces and dependencies between components

• Deployment diagram: configuration of processing nodes and the components
that execute on them

• Program design
• Class diagram (structural): classes, interfaces, collaborations, and

relationships

• Sequence diagram (dynamic): set of objects and their relationships

25

Class diagram

• Class: Set of objects with
the same attributes,
operations, relationships,
and semantics

• "Operation" = "method"

26

Example: Hello World applet

import java.applet.Applet;

import java.awt.Graphics;

class HelloWorld extends Applet {

 public void paint(Graphics g) {

 g.drawString("Hello!", 10, 20);

 }

}

27

Annotations

 ello orl

 p int
 g r w tring ello

28

Relationships

• Association: show multiplicity of
links between instances of
classes

• Analogous to relations in entity-
relation diagrams

• Bidirectional – doesn't imply
ownership or composition

 employer employee

Sommerville, Software Engineering, Tenth Edition, Figure 5.9

29

Relationships

• Dependency
• A change to one class may affect

the semantics of another

• Generalization (inheritance)
• Objects of a specialized (child)

class are substitutable for objects
of a generalized (parent) class

• Realization (interfaces)
• A class is guaranteed to fulfil a

contract specified by another class

30

Relationships

• Aggregation
• An instance of one class (the

whole) is composed of objects of
other classes (the parts)

• To reduce coupling, prefer
composition over inheritance

Sommerville, Software Engineering, Tenth Edition, Figure 5.13
31

HelloWorld relationships

 pplet

 ello orl

 p int
 r phics

 interf ce

PollEv.com/cs5150sp25

32

Rational Rose

33

Rational Rose

34

Lightweight design

• Less detail
• Only show "interesting" behaviors

and attributes with ownership
significance

• Less permanent
• May only exist on whiteboard during

design brainstorming
• Reduces maintenance of keeping

documents in-sync with code

• Less sequential
• Only design what you need for

current task
• Use lessons from implementation to

iterate on designs

• Leverage tooling and modern
languages

• Generate diagrams from source code
• Generate specifications from

comments
• IDEs highlight attributes and methods

• Still need design activities,
documentation to be successful

https://vtk.org/doc/nightly/html/classvtk3DWidget.html
35

https://vtk.org/doc/nightly/html/classvtk3DWidget.html

Class design

Given a real-life system, how do you decide which classes to use?

• Step 1: Identify set of candidate classes
• What terms do users and implementers use to describe the system?

• Is each candidate class crisply defined?

• What are the candidate classes' responsibilities? Are they balanced?

• What attributes and methods does each class need to carry out its
responsibilities?

36

Class design

• Step 2: Refine list of classes
• Improve clarity of design

• Increase cohesion within classes, reduce coupling between classes

37

Application and solution classes

• Application classes represent application concepts.
• Use Noun Identification to generate candidate application classes

• Solution classes represent system concepts
• User interface objects, databases, etc.

38

Example: noun identification

39

Example: Candidate classes

40

Example: Candidate classes

41

Example: Candidate relations

 oo is n tem

 ourn l is n tem

 opy is copy of oo

 i r ry em er

 tem

 em er f t is i r ry em er

42

Example: candidate methods

43

Example: candidate class diagram

44

Moving towards final design

• Reuse: Wherever possible use existing components, or class libraries
• They may need extensions.

• Restructuring: Change the design to improve understandability, maintainability
• Merge similar classes, split complex classes

• Optimization: Ensure that the system meets anticipated performance
requirements

• Change algorithms, more restructuring

• Completion: Fill all gaps, specify interfaces, etc.

• Design is iterative
• As the process moves from preliminary design to specification,

implementation, and testing it is common to find weaknesses in the program
design. Be prepared to make major modifications.

45

#1 rule of class design

• Classes should be easy to use correctly and hard to use incorrectly
• See Effective C++, Third Edition

• Other good rules of thumb:
• Avoid cyclic dependencies (tight coupling)

46

Modeling dynamic aspects of systems

• Interaction diagrams: show a set of objects and their relationships
• Includes messages sent between objects

• Sequence diagrams: time ordering of messages

47

Object notation

48

Message notation

synchronous signal

49

Example: Changing student program

50

Poll: PollEv.com/cs5150sp25

Sommerville, Software Engineering, Tenth Edition, Figure 7.7

(A)

(B)

(D)

(C)

51

	Slide 1: Lecture 9: Program Design
	Slide 2: Administrative reminders
	Slide 3: Previously on 5150…
	Slide 4: Design steps
	Slide 5: Design principles
	Slide 6: Client/Server
	Slide 7: Layered Architecture
	Slide 8: Pipe and Filter
	Slide 9: Repository
	Slide 10: Model-View-Controller
	Slide 11: Component diagram
	Slide 12: Publish-subscribe
	Slide 13: Deployment concerns
	Slide 14: Virtual machines
	Slide 15: Containers
	Slide 16: "Serverless"
	Slide 17: Three-tier vs. serverless
	Slide 18: Microservices
	Slide 19: Design steps
	Slide 20: Lecture goals: Program Design
	Slide 21: Program design models
	Slide 22: Heavyweight vs. Lightweight design
	Slide 23: Program design
	Slide 24: UML models for design
	Slide 25: UML model choices
	Slide 26: Class diagram
	Slide 27: Example: Hello World applet
	Slide 28: Annotations
	Slide 29: Relationships
	Slide 30: Relationships
	Slide 31: Relationships
	Slide 32: HelloWorld relationships
	Slide 33: Rational Rose
	Slide 34: Rational Rose
	Slide 35: Lightweight design
	Slide 36: Class design
	Slide 37: Class design
	Slide 38: Application and solution classes
	Slide 39: Example: noun identification
	Slide 40: Example: Candidate classes
	Slide 41: Example: Candidate classes
	Slide 42: Example: Candidate relations
	Slide 43: Example: candidate methods
	Slide 44: Example: candidate class diagram
	Slide 45: Moving towards final design
	Slide 46: #1 rule of class design
	Slide 47: Modeling dynamic aspects of systems
	Slide 48: Object notation
	Slide 49: Message notation
	Slide 50: Example: Changing student program
	Slide 51: Poll: PollEv.com/cs5150sp25

