
Lecture 8:
Architecture 2

CS 5150, Spring 2025

1

Administrative Reminders

• Project Report #2 is due on Feb 28 EOD.

• Assignment A2 due Feb 20

• Assignment A3 coming soon!

2

Previously on 5150…

3

Design steps

• Given requirements, must
design a system to meet them
• System architecture

• User experience

• Program design

• Ideal: requirements are
independent of design (avoid
implementation bias)

• Reality: working on design
clarifies requirements
• Methodology should allow

feedback (strength of iterative &
agile methods)

4

Design principles

• Design is an especially creative
part of the software
development process
• More a "craft" than a science

• Many tools are available; must
select appropriate ones for a given
project

• Strive for simplicity
• Use modeling, abstraction to

(hopefully) find simple ways to
achieve complex requirements

• Designs should be easy to
implement, test, and maintain

• Easy to use correctly, hard to use
incorrectly

• Low coupling, high cohesion

5

Levels of abstraction

• Requirements
• High-level "what” needs to be done

• Architecture
• High-level "how"
• Mid-level "what"

• Program design (Design patterns)
• Mid-level "how"
• Low-level "what"

• Code
• Low-level "how"

• Documentation for each step
should respect its level of
abstraction
• Avoid biasing later steps
• Avoid redundancy

11

Architectural considerations

• Infrastructure
• Hardware

• Operating systems

• Virtualization

• Interfaces
• Networks/buses

• Protocols

• Services
• Databases

• Authentication

• Operations
• Testing

• Logging/monitoring

• Backups

• Rolling deployment

• Product line

13

Example: interface diagram

 eb owse eb e ve

20

Example: deployment diagram

 eb owse

 e sonal o te

 eb e ve

 e ve

 atabase

22

Poll: Account data will be stored in a PostgreSQL
database running in a Docker container under Linux
on an HPE ProLiant server that also runs the web
server. Which architectural diagram is an
appropriate place to show these details?

PollEv.com/cs5150sp25

24

Client/Server

• Control flow in client and server
are independent

• Communication follows a
protocol

• If protocol is fixed, either side
can be replaced independently

• Peer-to-peer: same component
can act as both client and server

 a l l ent
 e a a l

 a l se ve
 e a l

26

Example: X Window System (X11)

• X server runs on computer w graphic display

• Client application (browser) connects to server
via X11 protocol

• Server send input events, client sends drawing
 commands

• onf s n ly, “X11 l ent” ns on “a l at on se ve ”,
wh le “X11 se ve ” ns on “th n l ent”

27

Layered Architecture

• Partition subsystems into stack
of layers
• Layer provides services to layer

directly above

• Layer relies on services to layer
directly below

• Advantage: constrains coupling

• Danger: leaky abstractions
• Clear separation is difficult

• May need services of multiple
lower layers

• Performance 28
Sommerville, Software Engineering

Example

• OSI Reference Model

• Used for network protocols (TCP/IP)

29

Pipe and Filter

• Transformation components
process inputs to produce outputs
• Subsystems coupled via data

exchange
• Good match for data flow models
• May be dynamically assembled
• Limited user interaction

• Applications:
• Compilers
• Graphics shaders
• Signal processing

• Caveats:
• Awkward to handle events

(interactive systems)
• Rate mismatches if branches merge

31

Examples

32

Repository

• Couple subsystems via shared data
• Repository may need to support atomic

transactions

• Advantages:
• Components are independent (low

coupling)
• Centralized state storage (good for

backups)
• Changes propagated easily

• Dangers:
• Bottleneck / single point of failure

 e os to y

 n t
 o onents

 ansa ons

33

Poll: Consider a real-time data processing system
continuously collecting and analyzing log files from
multiple distributed servers. The system should
filter, aggregate, and store logs while allowing
administrators to query historical data efficiently.
Which architectural pattern would be most
appropriate, and why?

PollEv.com/cs5150sp25

34

Lecture goals

• Identify common architectural styles (continued)
• Three tier architecture

• Model-view-controller

• Encapsulate deployments using virtualization

35

Architectural styles
… ont n ed f o Le t e 7

36

Three tier architecture

• Extension of client/server model

• Commonly used for small-medium websites
• Classic example: LAMP stack for web applications (Linux, Apache, MySQL,

PHP/Python)

37

Basic website (client/server)

 eb owse eb e ve

38

Extension: data store

39

Component diagram

 eb e ve eb owse

 atabase
 e ve

Significance of components (replaceable binary elements):
• Any web browser can access the website
• Database can be replaced by another that supports the same interface

40

Three tier architectural style

41

Presentation tier complexity

 ava t

 L ende

 eb owse

Presentation tier may house internal complexity, but as long as it supports the same interface, it is
still a binary-replaceable component

42

Model-View-Controller

• Beware: many variations
• Some are architectural styles: system-level responsibilities partitioned into

different components
• Example: Play Framework for building web apps

• Some are program design patterns: functionality divided between different
classes
• Focus on reusable controls

• Example: Swing widgets

• Variation on which logic is widget-level vs. form-level (MVC vs. MVP)

• Variation on which classes communicate directly (MVC vs. MVA)

• Variations in model storage (domain objects, DB record sets, immutable store)

43

Read more: https://martinfowler.com/eaaDev/uiArchs.html

https://martinfowler.com/eaaDev/uiArchs.html

Component diagram

44

Features of MVC

• Separated presentation
• Decouple model and view (replaceable components)

• Multiple (possibly simultaneous) views supported

45

Example: "mission control" terminal

(based on a past CS 5150 project)

• A vehicle (unmanned aircraft) is flown by a pilot interfacing with a
computer terminal on the ground

• Vehicle communicates with ground station via radio signals
• Actuation commands (uplink): change throttle, angle flaps, etc.

• Sensor measurements (downlink): air speed, GPS position, actuator settings,
etc.

46

Example: View

• Graphical user interface shows model properties (sensor
readings, derived state) as instrument dials and provides input
widgets for commanding actuators

 lot

47

Example: Model

• a nta ns e o d of state of veh le s eed, f el, …

• Computes derived properties of vehicle (rate of turn, predicted
t aje to y, …

• Updates state in response to actions from controller (e.g. new
telemetry received)

• Provides view with information to be displayed to user

Different vehicles will need different models but might not require new
views or controllers.

48

Example: Controller

Scenario: Pilot wishes to change flap angle to 20 deg to increase lift
and accommodate a slower speed for landing.

1. View sends message to controller: setFlaps(20)

2. Controller sends radio command to vehicle: setFlaps(20)

3. Vehicle acts on command and replies to controller: flapsSet(20)

4. Controller relays telemetry to model: flapsSet(20)

5. Model updates state and recomputes stall speed

6. Model notifies view of new state (flap setting, stall speed)

7. View displays new state in user interface

49

View

• Presents application state and controls to user

• Typically subscribes to model for notifications of state changes
• "Observer pattern"

• Responsible for rendering to a particular interface
• Drawing graphics, generating HTML, printing text

• Sends user input to controller

• A single model can support multiple views
• Example: web app, native app

50

Model

• Records state of application and notifies subscribers
• Responds to instructions to change state (from controller)

• Does not depend on either controller or view

• State may be stored in objects or databases

• May be responsible for some application logic (e.g. input validation)

51

Controller

• Manages user input and navigation

• Defines application behavior

• Maps user actions to changes in state (model) or view

• May interact with external services via APIs

• May be responsible for some application logic (e.g. input validation)

• Variety in distribution of duties between model and controller

52

Deployment vs. component diagrams

• Example: server-side web application
• View consists of templates (executed on server), stylesheets, JavaScript

(executed on client)

• Client browser responsible for rendering, input handling

• Execution of view elements may be distributed across multiple nodes,
but from developer's perspective, they form one component

53

Publish-subscribe

• Event-driven control
• Application responds to external stimuli and timeouts

• No centralized orchestration

• Very loose coupling – components communicate via message broker
• Easy to extend

• Difficult to analyze (observer pattern)
• No control over what (if any) code responds to an event

• Potential for conflicts (multiple components respond in incompatible ways)

• Potential for silently dropped events

• Call stacks may not reflect causality

55

Closing remark

• Beware software architectures that resemble corporate hierarchy
• Refactoring more disruptive than reorgs

• Be aware of and accommodate political context, but architecture should serve
the application more than the developer

59

Virtualization

60

Deployment concerns

• Dependency conflicts

• Configuration, data sprawl

• OS portability

• Unintended interactions
• Filesystem has same problems as global variables

• Solution: Encapsulation; but...
• Deploying on separate machines risks under-utilization

61

Virtual machines

• Multiple OS instances running on one machine
• Real hardware is managed by host OS or hypervisor

• Improves hardware utilization, reduces cost
• Avoids energy consumption by redundant hardware

• Stateful – still risks data sprawl
• Address with automated administration

• High overhead – software redundancy

• Examples: VMware, VirtualBox, Xen, Hyper-V

62

System configuration management

• Automate deployments
• Installing dependencies

• Configuring OS

• Configuring application

• Combat sprawl

• Examples: Ansible, Puppet, Chef, Vagrant

63

Containers

• Trade OS heterogeneity for reduced redundancy

• Still isolate filesystem, network without duplicating OS

• Lightweight – new instances start quickly
• Improves elasticity

• Often encapsulates a single application

• Often treated as stateless (don't write to filesystem)

• Examples: Docker, LXC

64

"Serverless"

• Computation nodes are stateless, ephemeral, and event-triggered
• Data store services still persist state, but are application-agnostic

• Application decomposed into event-handler functions
• Event dispatch, container lifetime managed by platform

• Examples: Amazon Lambda, Azure Functions

65https://martinfowler.com/articles/serverless.html

Three-tier vs. serverless

https://martinfowler.com/articles/serverless.html
66

https://martinfowler.com/articles/serverless.html

Microservices

• Components encapsulate services and expose them via standard
interfaces. Are ideally binary-replaceable
• In practice, many frameworks for managing modular applications are language-

specific (e.g., OSGi for Java)
• OOP abstractions like objects, methods are complicated at language boundaries and

distributed deployment

• Microservices constrain component definition to reduce coupling
• Language-agnostic protocols (e.g., RESTful HTTP)
• Independently deployable

• Advantage: More scalable, fault tolerant, rapid roll out
• Disadvantage: Complex monitoring, more points of failure, network delays,

testing is challenging
• Examples: Netflix, Amazon, Uber

67

Amazon’s Microservices Architecture (2008)

68https://x.com/Werner/status/741673514567143424

https://x.com/Werner/status/741673514567143424

Software Architecture Resources

• An Introduction to Software Architecture: David Garlan and Mary
Shaw

• Software Engineering, Ian Sommerville: Chapter 6

• https://martinfowler.com/architecture/

69

https://martinfowler.com/architecture/

	Slide 1: Lecture 8: Architecture 2
	Slide 2: Administrative Reminders
	Slide 3: Previously on 5150…
	Slide 4: Design steps
	Slide 5: Design principles
	Slide 11: Levels of abstraction
	Slide 13: Architectural considerations
	Slide 20: Example: interface diagram
	Slide 22: Example: deployment diagram
	Slide 24: Poll: Account data will be stored in a PostgreSQL database running in a Docker container under Linux on an HPE ProLiant server that also runs the web server. Which architectural diagram is an appropriate place to show these details?
	Slide 26: Client/Server
	Slide 27: Example: X Window System (X11)
	Slide 28: Layered Architecture
	Slide 29: Example
	Slide 31: Pipe and Filter
	Slide 32: Examples
	Slide 33: Repository
	Slide 34: Poll: Consider a real-time data processing system continuously collecting and analyzing log files from multiple distributed servers. The system should filter, aggregate, and store logs while allowing administrators to query historical data effic
	Slide 35: Lecture goals
	Slide 36: Architectural styles
	Slide 37: Three tier architecture
	Slide 38: Basic website (client/server)
	Slide 39: Extension: data store
	Slide 40: Component diagram
	Slide 41: Three tier architectural style
	Slide 42: Presentation tier complexity
	Slide 43: Model-View-Controller
	Slide 44: Component diagram
	Slide 45: Features of MVC
	Slide 46: Example: "mission control" terminal
	Slide 47: Example: View
	Slide 48: Example: Model
	Slide 49: Example: Controller
	Slide 50: View
	Slide 51: Model
	Slide 52: Controller
	Slide 53: Deployment vs. component diagrams
	Slide 55: Publish-subscribe
	Slide 59: Closing remark
	Slide 60: Virtualization
	Slide 61: Deployment concerns
	Slide 62: Virtual machines
	Slide 63: System configuration management
	Slide 64: Containers
	Slide 65: "Serverless"
	Slide 66: Three-tier vs. serverless
	Slide 67: Microservices
	Slide 68: Amazon’s Microservices Architecture (2008)
	Slide 69: Software Architecture Resources

