
Lecture 7:
Architecture
CS 5150, Spring 2025
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Lecture goals

• Understand the importance and need for software architectures

• Visualize structural models with deployment and interface diagrams

• Identify common architectural styles
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Administrative Reminders

• Project Plan is due today (Feb 11, 11.59 PM)

• Meet with your client for the first sprint – your grade depends on it!

• Assignment A2: Some issues with different OSes
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Poll: How are you feeling about the project?

PollEv.com/cs5150sp25
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System design
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Design steps

• Given requirements, must 
design a system to meet them

• System architecture

• User experience

• Program design

• Ideal: requirements are 
independent of design (avoid 
implementation bias)

• Reality: working on design 
clarifies requirements

• Methodology should allow 
feedback (strength of iterative & 
agile methods)
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Design principles

• Design is an especially creative 
part of the software 
development process

• More a "craft" than a science

• Many tools are available; must 
select appropriate ones for a given 
project

• Strive for simplicity
• Use modeling, abstraction to 

(hopefully) find simple ways to 
achieve complex requirements

• Designs should be easy to 
implement, test, and maintain

• Easy to use correctly, hard to use 
incorrectly

• Low coupling, high cohesion
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Software Architecture

Software architecture is the set of structures 
needed to reason about a software system and 
the discipline of creating such structures and 
systems. Each structure comprises software 
elements, relations among them, and properties 
of both elements and relations. [Bass et al. 2003]

Note: this definition is ambivalent to whether this 
architecture is known or any good!
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Software Architecture: Other Definitions

• Brooks: Conceptual integrity is 
key to usability and 
maintainability; architect 
maintains conceptual integrity

• Johnson: The shared 
understanding that expert 
developers have of the system 
/ The decisions you wish you 
could get right early in a project

• Sommerville: Dominant 
influence on non-functional 
system characteristics

• "Highest level" organization of 
system
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Why document Architecture?

• Blueprint for the system
• Artifact for early analysis/communication

• Primary carrier of quality attributes: performance, robustness, reusability

• Key to post-deployment maintenance

• Documentation speaks for the architect, today and 20 years from 
today

• As long as the system is built, maintained, and evolved according to its 
documented architecture
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Every software system has an architecture, whether you know it or not!
If you don’t consciously elaborate the architecture, it will evolve by itself!
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Levels of abstraction

• Requirements
• High-level "what” needs to be done

• Architecture
• High-level "how"
• Mid-level "what"

• Program design (Design patterns)
• Mid-level "how"
• Low-level "what"

• Code
• Low-level "how"

• Documentation for each step 
should respect its level of 
abstraction

• Avoid biasing later steps
• Avoid redundancy
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Example

• Requirements:
• Drone should hover stably

• Architecture
• Sensing → navigation → control → 

actuation

• Radio input

• Program design
• PID controller, low-pass filter

• Gain registry

• Code
• def lpf(x1, y0, a):

 """exp filter w/ 
smoothing factor a"""
 return a*x1 + (1-a)*y0
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Architectural considerations

• Infrastructure
• Hardware

• Operating systems

• Virtualization

• Interfaces
• Networks/buses

• Protocols

• Services
• Databases

• Authentication

• Operations
• Testing

• Logging/monitoring

• Backups

• Rolling deployment

• Product line
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Architectual models

• Diagram and supporting 
specification

• Be specific with notation

• Multiple perspectives
• Conceptual

• Static (subsystems)

• Dynamic (data flow)

• Physical (deployment)

• Appropriate level of detail
• A single diagram should fit cleanly 

on one page

• Distinct from program models
• Inheritance diagrams don’t show 

interactions
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Examples

Sommerville, Software Engineering Garlan & Shaw, "An Introduction to Software Architecture"
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Packing Robot control system Oscilloscope



Subsystems

• Improve comprehensibility of 
system by decomposing into 
subsystems

• Group elements into subsystems 
to minimize coupling while 
maintaining cohesion

• Coupling: Dependencies 
between two subsystems

• If coupling is high, can't change 
one without affecting the other

• Cohesion: Dependencies within 
a subsystem

• High cohesion implies closely-
related functionality
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UML: Package

• General grouping of system 
elements

• Appropriate for denoting 
subsystem at conceptual level
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Example: conceptual diagram
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UML: Component

• Replaceable part of a system
• Conforms to and realizes a set of 

interfaces
• An implementation of a subsystem
• Could be replaced by another 

component that realizes the same 
interfaces, and system would still 
function

• Distinct from classes
• Classes may have fields, are 

assembled into programs
• Components realize interfaces, are 

assembled into systems
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Example: interface diagram

 eb rowser  eb erver
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Node

• Physical element that exists at 
runtime, provides a 
computational resource

• Computer

• Smartphone

• Network router

• Components live on nodes
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Example: deployment diagram

 eb rowse 

 ersonal om uter

 eb erver

 erver

          

     

 atabase
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Deployment environments

• Development

• Production

• Staging

• (Acceptance testing)
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Poll: A web server is designed to 
communicate with a database via a JDBC 
driver. Which architectural diagram is the 
best place to show this constraint?

PollEv.com/cs5150sp25
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Architectural styles
System architecture (or portion thereof) that recurs in many different applications
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Client/Server

• Control flow in client and server 
are independent

• Communication follows a 
protocol

• If protocol is fixed, either side 
can be replaced independently

• Peer-to-peer: same component 
can act as both client and server

 ail client
 e g   ac ail 

 ail server
 e g   mail 

I   
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Example: X Window System (X11)

• X server runs on computer w graphic display

• Client application (browser) connects to server 
via X11 protocol

• Server send input events, client sends drawing
 commands

•  onfusingly, “X11 client” runs on “a  lication server”, 
while “X11 server” runs on “thin client”
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Layered Architecture

• Partition subsystems into stack 
of layers

• Layer provides services to layer 
directly above

• Layer relies on services to layer 
directly below

• Advantage: constrains coupling

• Danger: leaky abstractions
• Clear separation is difficult

• May need services of multiple 
lower layers

• Performance
Sommerville, Software Engineering
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Example

• OSI Reference Model

• Used for network protocols (TCP/IP)
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Examples

• OSI reference model 
architecture

• See Sommerville, Software 
Engineering, Tenth Edition, Web 
sections: Reference Architectures

• Oscilloscope: Layered approach
• See Garlan & Shaw, "An 

Introduction to Software 
Architecture"
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https://iansommerville.com/software-engineering-book/static/web/refarch/
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Pipe and Filter

• Transformation components 
process inputs to produce outputs

• Subsystems coupled via data 
exchange

• Good match for data flow models
• May be dynamically assembled
• Limited user interaction

• Applications:
• Compilers
• Graphics shaders
• Signal processing

• Caveats:
• Awkward to handle events 

(interactive systems)
• Rate mismatches if branches merge
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Examples
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Repository

• Couple subsystems via shared data
• Repository may need to support atomic 

transactions

• Advantages:
• Components are independent (low 

coupling)
• Centralized state storage (good for 

backups)
• Changes propagated easily

• Dangers:
• Bottleneck / single point of failure

 e ository

In ut
com onents

 ransac ons
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Flexibility through indirection

• Repository is highly coupled – 
difficult to change data store

• By defining higher-level storage 
access interface, data store is 
now lightly coupled

 ata  tore

In ut
com onents  ransac ons

 torage
 ccess

                         
            

 e ository
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Example: Compilers (Language Processing 
System)
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