
Lecture 7:
Architecture
CS 5150, Spring 2025

1

Lecture goals

• Understand the importance and need for software architectures

• Visualize structural models with deployment and interface diagrams

• Identify common architectural styles

2

Administrative Reminders

• Project Plan is due today (Feb 11, 11.59 PM)

• Meet with your client for the first sprint – your grade depends on it!

• Assignment A2: Some issues with different OSes

3

Poll: How are you feeling about the project?

PollEv.com/cs5150sp25

4

System design

5

Design steps

• Given requirements, must
design a system to meet them

• System architecture

• User experience

• Program design

• Ideal: requirements are
independent of design (avoid
implementation bias)

• Reality: working on design
clarifies requirements

• Methodology should allow
feedback (strength of iterative &
agile methods)

6

Design principles

• Design is an especially creative
part of the software
development process

• More a "craft" than a science

• Many tools are available; must
select appropriate ones for a given
project

• Strive for simplicity
• Use modeling, abstraction to

(hopefully) find simple ways to
achieve complex requirements

• Designs should be easy to
implement, test, and maintain

• Easy to use correctly, hard to use
incorrectly

• Low coupling, high cohesion

7

Software Architecture

Software architecture is the set of structures
needed to reason about a software system and
the discipline of creating such structures and
systems. Each structure comprises software
elements, relations among them, and properties
of both elements and relations. [Bass et al. 2003]

Note: this definition is ambivalent to whether this
architecture is known or any good!

8

Software Architecture: Other Definitions

• Brooks: Conceptual integrity is
key to usability and
maintainability; architect
maintains conceptual integrity

• Johnson: The shared
understanding that expert
developers have of the system
/ The decisions you wish you
could get right early in a project

• Sommerville: Dominant
influence on non-functional
system characteristics

• "Highest level" organization of
system

9

Why document Architecture?

• Blueprint for the system
• Artifact for early analysis/communication

• Primary carrier of quality attributes: performance, robustness, reusability

• Key to post-deployment maintenance

• Documentation speaks for the architect, today and 20 years from
today

• As long as the system is built, maintained, and evolved according to its
documented architecture

10

11

Every software system has an architecture, whether you know it or not!
If you don’t consciously elaborate the architecture, it will evolve by itself!

12

Levels of abstraction

• Requirements
• High-level "what” needs to be done

• Architecture
• High-level "how"
• Mid-level "what"

• Program design (Design patterns)
• Mid-level "how"
• Low-level "what"

• Code
• Low-level "how"

• Documentation for each step
should respect its level of
abstraction

• Avoid biasing later steps
• Avoid redundancy

13

Example

• Requirements:
• Drone should hover stably

• Architecture
• Sensing → navigation → control →

actuation

• Radio input

• Program design
• PID controller, low-pass filter

• Gain registry

• Code
• def lpf(x1, y0, a):

 """exp filter w/
smoothing factor a"""
 return a*x1 + (1-a)*y0

14

Architectural considerations

• Infrastructure
• Hardware

• Operating systems

• Virtualization

• Interfaces
• Networks/buses

• Protocols

• Services
• Databases

• Authentication

• Operations
• Testing

• Logging/monitoring

• Backups

• Rolling deployment

• Product line

15

Architectual models

• Diagram and supporting
specification

• Be specific with notation

• Multiple perspectives
• Conceptual

• Static (subsystems)

• Dynamic (data flow)

• Physical (deployment)

• Appropriate level of detail
• A single diagram should fit cleanly

on one page

• Distinct from program models
• Inheritance diagrams don’t show

interactions

16

Examples

Sommerville, Software Engineering Garlan & Shaw, "An Introduction to Software Architecture"
17

Packing Robot control system Oscilloscope

Subsystems

• Improve comprehensibility of
system by decomposing into
subsystems

• Group elements into subsystems
to minimize coupling while
maintaining cohesion

• Coupling: Dependencies
between two subsystems

• If coupling is high, can't change
one without affecting the other

• Cohesion: Dependencies within
a subsystem

• High cohesion implies closely-
related functionality

18

UML: Package

• General grouping of system
elements

• Appropriate for denoting
subsystem at conceptual level

19

Example: conceptual diagram

20

UML: Component

• Replaceable part of a system
• Conforms to and realizes a set of

interfaces
• An implementation of a subsystem
• Could be replaced by another

component that realizes the same
interfaces, and system would still
function

• Distinct from classes
• Classes may have fields, are

assembled into programs
• Components realize interfaces, are

assembled into systems

21

Example: interface diagram

 eb rowser eb erver

22

Node

• Physical element that exists at
runtime, provides a
computational resource

• Computer

• Smartphone

• Network router

• Components live on nodes

23

Example: deployment diagram

 eb rowse

 ersonal om uter

 eb erver

 erver

 atabase

24

Deployment environments

• Development

• Production

• Staging

• (Acceptance testing)

25

Poll: A web server is designed to
communicate with a database via a JDBC
driver. Which architectural diagram is the
best place to show this constraint?

PollEv.com/cs5150sp25

26

Architectural styles
System architecture (or portion thereof) that recurs in many different applications

27

Client/Server

• Control flow in client and server
are independent

• Communication follows a
protocol

• If protocol is fixed, either side
can be replaced independently

• Peer-to-peer: same component
can act as both client and server

 ail client
 e g ac ail

 ail server
 e g mail

I

28

Example: X Window System (X11)

• X server runs on computer w graphic display

• Client application (browser) connects to server
via X11 protocol

• Server send input events, client sends drawing
 commands

• onfusingly, “X11 client” runs on “a lication server”,
while “X11 server” runs on “thin client”

29

Layered Architecture

• Partition subsystems into stack
of layers

• Layer provides services to layer
directly above

• Layer relies on services to layer
directly below

• Advantage: constrains coupling

• Danger: leaky abstractions
• Clear separation is difficult

• May need services of multiple
lower layers

• Performance
Sommerville, Software Engineering

31

Example

• OSI Reference Model

• Used for network protocols (TCP/IP)

32

Examples

• OSI reference model
architecture

• See Sommerville, Software
Engineering, Tenth Edition, Web
sections: Reference Architectures

• Oscilloscope: Layered approach
• See Garlan & Shaw, "An

Introduction to Software
Architecture"

33

https://iansommerville.com/software-engineering-book/static/web/refarch/
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf

Pipe and Filter

• Transformation components
process inputs to produce outputs

• Subsystems coupled via data
exchange

• Good match for data flow models
• May be dynamically assembled
• Limited user interaction

• Applications:
• Compilers
• Graphics shaders
• Signal processing

• Caveats:
• Awkward to handle events

(interactive systems)
• Rate mismatches if branches merge

35

Examples

36

Repository

• Couple subsystems via shared data
• Repository may need to support atomic

transactions

• Advantages:
• Components are independent (low

coupling)
• Centralized state storage (good for

backups)
• Changes propagated easily

• Dangers:
• Bottleneck / single point of failure

 e ository

In ut
com onents

 ransac ons

38

Flexibility through indirection

• Repository is highly coupled –
difficult to change data store

• By defining higher-level storage
access interface, data store is
now lightly coupled

 ata tore

In ut
com onents ransac ons

 torage
 ccess

 e ository

39

Example: Compilers (Language Processing
System)

40

44

	Slide 1: Lecture 7: Architecture
	Slide 2: Lecture goals
	Slide 3: Administrative Reminders
	Slide 4: Poll: How are you feeling about the project?
	Slide 5: System design
	Slide 6: Design steps
	Slide 7: Design principles
	Slide 8: Software Architecture
	Slide 9: Software Architecture: Other Definitions
	Slide 10: Why document Architecture?
	Slide 11
	Slide 12
	Slide 13: Levels of abstraction
	Slide 14: Example
	Slide 15: Architectural considerations
	Slide 16: Architectual models
	Slide 17: Examples
	Slide 18: Subsystems
	Slide 19: UML: Package
	Slide 20: Example: conceptual diagram
	Slide 21: UML: Component
	Slide 22: Example: interface diagram
	Slide 23: Node
	Slide 24: Example: deployment diagram
	Slide 25: Deployment environments
	Slide 26: Poll: A web server is designed to communicate with a database via a JDBC driver. Which architectural diagram is the best place to show this constraint?
	Slide 27: Architectural styles
	Slide 28: Client/Server
	Slide 29: Example: X Window System (X11)
	Slide 31: Layered Architecture
	Slide 32: Example
	Slide 33: Examples
	Slide 35: Pipe and Filter
	Slide 36: Examples
	Slide 38: Repository
	Slide 39: Flexibility through indirection
	Slide 40: Example: Compilers (Language Processing System)
	Slide 44

