Lecture /:
Architecture

CS 5150, Spring 2025

Lecture goals

* Understand the importance and need for software architectures
* Visualize structural models with deployment and interface diagrams
 |dentify common architectural styles

Administrative Reminders

* Project Plan is due today (Feb 11, 11.59 PM)
* Meet with your client for the first sprint — your grade depends on it!
* Assignment A2: Some issues with different OSes

Poll: How are you feeling about the project?

PollEv.com/cs5150sp25

System design

Design steps

e Given requirements, must * Ideal: requirements are
a system to meet them independent of design (avoid
* System architecture implementation bias)
* User experience * Reality: working on design
* Program design clarifies requirements

 Methodology should allow
feedback (strength of iterative &
agile methods)

Design principles

* Design is an especially creative e Strive for

part of the software « Use modeling, abstraction to

development process (hopefully) find simple ways to
achieve complex requirements

e Designs should be easy to
implement, test, and maintain

e More a "craft" than a science

* Many tools are available; must
select appropriate ones for a given

project e Easy to use correctly, hard to use
incorrectly

* Low coupling, high cohesion

Software Architecture

Software architecture is the set of structures
needed to reason about a software system and
the discipline of creating such structures and
systems. Each structure comprises software
elements, relations among them, and properties
of both elements and relations. [Bass et al. 2003]

Note: this definition is ambivalent to whether this
architecture is known or any good!

Software Architecture: Other Definitions

* Brooks: Conceptual integrity is Sommerville: Dominant
key to usability and influence on non-functional
maintainability; system characteristics
maintains conceptual integrity

* Johnson: The shared » "Highest level" organization of

understanding that expert
developers have of the system

/ The decisions you wish you
could get right early in a project

system

Why document Architecture?

e Blueprint for the system
* Artifact for early analysis/communication
* Primary carrier of quality attributes: performance, robustness, reusability
* Key to post-deployment maintenance

 Documentation speaks for the architect, today and 20 years from
today

* Aslong as the system is built, maintained, and evolved according to its
documented architecture

R T
N S o ! M

SOOI

/
<

P T T Yy

S

A

ONNRNINSY
PR = L

ot ¢ 5 2;
o < (R
pre -!gsf ———r

o e

R

T T e e

— &
NN
LA A A S
RUIRE T z
S aia il

mr

By T
! X

; =

PR Y e it i

2 NG

& PR

Every software system has an architecture, whether you know it or not!
If you don’t consciously elaborate the architecture, it will evolve by itself!

12

Levels of abstraction

* Requirements Documentation for each step
* High-level "what” needs to be done should respect its level of

* Architecture abstra(.:tlo.n ,
+ High-level "how" * Avoid biasing later steps

e Mid-level "what" e Avoid redundancy

* Program design (Design patterns)
e Mid-level "how"
e Low-level "what"

e Code

 Low-level "how"

Example

* Requirements: * Code

* Drone should hover stably « def 1lpf(x1, yo, a):

"""exp filter w/

* Architecture :
smoothing factor a
* Sensing - navigation - control - return a*x1 + (1-a)*y@

actuation
* Radio input

* Program design
* PID controller, low-pass filter
* Gain registry

Architectural considerations

* Infrastructure * Operations
* Hardware * Testing
* Operating systems * Logging/monitoring
* Virtualization * Backups

e Interfaces * Rolling deployment
* Networks/buses * Product line
* Protocols

* Services

e Databases
e Authentication

Architectual models

e Diagram and supporting e Appropriate level of detail
specification * A single diagram should fit cleanly
* Be specific with notation on one page
* Multiple perspectives
. Conceptual * Distinct from program models
* Static (subsystems) * Inheritance diagrams don’t show

* Dynamic (data flow) Interactions

* Physical (deployment)

Examples

Vision
system l
~ Object Arm Gripper
identification > controller controller
system
A
Packaging Oscilloscope
selection object
system / T~
e o o
> waveform
Packin
s stemg > Comveyor max-min wvfm| [xy wim] |accumulate wvfm
Y controller
Packing Robot control system Oscilloscope

7
Sommerville, Software Engineering Garlan & Shaw, "An Introduction to Software Arclhitectu re"

Subsystems

* Improve comprehensibility of * Coupling: Dependencies
system by decomposing into between two subsystems
* If coupling is high, can't change

« Group elements into subsystems one without affecting the other

to minimize coupling while * Cohesion: Dependencies within

maintaining cohesion a subsystem

* High cohesion implies closely-
related functionality

18

UML: Package

* General grouping of system
elements

e Appropriate for denoting
subsystem at conceptual level

Package

19

Example: conceptual diagram

Lexical analysis

Parser

Code generation

20

UML: Component

* Replaceable part of a system

e Conforms to and realizes a set of
interfaces

* An implementation of a subsystem

* Could be replaced by another
component that realizes the same
interfaces, and system would still
function

e Distinct from classes

* Classes may have fields, are
assembled into programs

 Components realize interfaces, are
assembled into systems

Component

21

Example: interface diagram

WebBrowser | ----)Q WebServer
HTTP
dependency realization

interface

22

Node

* Physical element that exists at
runtime, provides a
computational resource

* Computer
* Smartphone
* Network router

 Components live on nodes

Node

23

Example: deployment diagram

nodes

P T
PersonalComputer Server
z | 2 |
WebBrowser — 4/ - - =k - - - - - - - - - ——> WebServer
\ —
\ 4
/
components Database

24

Deployment environments

* Development

* Production
* Staging
 (Acceptance testing)

Poll: A web server is designed to
communicate with a database via a JDBC

driver. Which architectural diagram is the
best place to show this constraint?

PollEv.com/cs5150sp25

Architectural styles

System architecture (or portion thereof) that recurs in many different applications

27

Client/Server

 Control flow in client and server
are independent

e Communication follows a
protocol

* If protocol is fixed, either side
can be replaced independently

* Peer-to-peer: same component
can act as both client and server

Mail client
(e.g. MacMail)

Mail server
(e.g. Gmail)

Client 1 Client 2 Client 3

N

Internet

L]

Catalog Video Picture
server server server
Library Film store Photo store

catalogue

Client 4

|
|

Web
server

Film and
photo info.

Example: X Window System (X11)

e X server runs on computer w graphic display

* Client application (browser) connects to server
via X11 protocol

e Server send input events, client sends drawing
commands

* Confusingly, “X11 client” runs on “application server”,
while “X11 server” runs on “thin client”

User’s workstation

Keyboard [[Mouse| ([Screen
7 7 A
|
X Server
X client X client
(browser)| | (xterm)
1
Network =~
X client
(xterm)

Remote machine

Layered Architecture

 Partition subsystems into stack
of layers

* Layer provides services to layer User interface
directly above

* Layer relies on services to layer
directly below

User interface management
Authentication and authorization

Core business logic/application functionality

* Advantage: constrains coupling System utilties

* Danger: leaky abstractions
 Clear separation is difficult

* May need services of multiple
lower layers

* Performance

System support (OS, database etc.)

. 31, :
Sommerville, Software Engineering

Example

* OS| Reference Model
* Used for network protocols (TCP/IP)

I

7. Application

SR ?La yers

of the OSI Model

End User layer
HTTP, FTP, IRC, SSH, DNS

Syntax layer
SSL, SSH, IMAP, FTP, MPEG, JPEG

Synch & send to port
API’s, Sockets, WinSock

End-to-end connections
TCP, UDP

Packets
IP, ICMP, IPSec, IGMP

Frames

Ethernet, PPP, Switch, Bridge

Physical structure

Coax, Fiber, Wireless, Hubs, Repeaters

32

Examples

e OSI reference model
architecture

* See Sommerville, Software
Engineering, Tenth Edition, Web
sections: Reference Architectures

* Oscilloscope: Layered approach

e See Garlan & Shaw, "An

Introduction to Software
Architecture"

33

https://iansommerville.com/software-engineering-book/static/web/refarch/
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf

Pipe and Filter

* Transformation components
process inputs to produce outputs

* Subsystems coupled via data
exchange

 Good match for data flow models

* May be dynamically assembled
* Limited user interaction

* Applications:
* Compilers
* Graphics shaders
* Signal processing

* Caveats:

 Awkward to handle events
(interactive systems)

e Rate mismatches if branches merge

Read issued Identify
invoices payments

A

A

Invoices

Payments

L 3

Issue
— > -
receipts

)

Receipts

Find
payments
due

Issue
payment
reminder

Reminders

35

Examples

Transformed
Raw Vertices Vertices & Processed
& Primitives Primitives Fragments Fragments Pixels _ pisplay
Vertex Fragment
. Output f
 Processor _ Rasterizer . Processor Mergin |
(Programmable) (Programmable) Eing (’ ﬂ
n\ ;\\ -
D e, 3D 09 .50 2D array of
‘009, / 980" :
‘f!....\ f."ﬁ..OB\ color-values

=y =y

3D Graphics Rendering Pipeline: Output of one stage is fed as input of the next stage. A vertex has attributes
such as (x, y, z) position, color (RGB or RGBA), vertex-normal (nx, ny, n:), and texture. A primitive is made up of
one or more vertices. The rasterizer raster-scans each primitive to produce a set of grid-aligned fragments, by

interpolating the vertices.

Compiler front-end for language 1

Language 1 source code

Language 2 source code

Compiler front-end for language 2

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code

Generator

Lexical Analyzer (Scanner)

Syntax/Semantic
Analyzer (Parser)

Intermediate-code
Generator

Non-optimized intermediate code

Non-optimized intermediate code

| Intermediate code optimizer |

Optimized intermediate code

/

Target-1
Code Generator

lTarget-l machine code

- O

\

Target-2
Code Generator

lTarget-z machine code

- O

36

Repository

* Couple subsystems via shared data

* Repository may need to support atomic

transactions

* Advantages:

 Components are independent (low components

Input

coupling)
* Centralized state storage (good for
backups)

* Changes propagated easily

* Dangers:
* Bottleneck / single point of failure

Transactions

!

Repository

Flexibility through indirection

* Repository is highly coupled —
difficult to change data store

* By defining higher-level storage —
access interface, data store is — Rep“'“’%
. Inpu orage
NOW | |g ht |y cou p | ed compzn:ents D ":) SAtccefs <77
This is sometimes cal/éc/)’/a o i
gluelayer Data Store

Transactions

Example: Compilers (Language Processing

System)

Lexical
analyzer

Syntax
analyzer

Abstract Grammar
syntax tree definition
Symbol Output
table definition

Repository

Semantic
analyzer

Code
generator

40

44

	Slide 1: Lecture 7: Architecture
	Slide 2: Lecture goals
	Slide 3: Administrative Reminders
	Slide 4: Poll: How are you feeling about the project?
	Slide 5: System design
	Slide 6: Design steps
	Slide 7: Design principles
	Slide 8: Software Architecture
	Slide 9: Software Architecture: Other Definitions
	Slide 10: Why document Architecture?
	Slide 11
	Slide 12
	Slide 13: Levels of abstraction
	Slide 14: Example
	Slide 15: Architectural considerations
	Slide 16: Architectual models
	Slide 17: Examples
	Slide 18: Subsystems
	Slide 19: UML: Package
	Slide 20: Example: conceptual diagram
	Slide 21: UML: Component
	Slide 22: Example: interface diagram
	Slide 23: Node
	Slide 24: Example: deployment diagram
	Slide 25: Deployment environments
	Slide 26: Poll: A web server is designed to communicate with a database via a JDBC driver. Which architectural diagram is the best place to show this constraint?
	Slide 27: Architectural styles
	Slide 28: Client/Server
	Slide 29: Example: X Window System (X11)
	Slide 31: Layered Architecture
	Slide 32: Example
	Slide 33: Examples
	Slide 35: Pipe and Filter
	Slide 36: Examples
	Slide 38: Repository
	Slide 39: Flexibility through indirection
	Slide 40: Example: Compilers (Language Processing System)
	Slide 44

