Lecture 6:
Models

CS 5150, Spring 2025

Administrative reminders

* Assignment A2 released (Due Feb 20)

* Project Plan (Due Feb 11)

e Schedule meeting with client
e Share draft for review

Project Scoring Rubrics

* Client meetings (at least one per sprint):

 Participation: Are all members present?
* Preparation (agenda, clear goals, well-informed questions)
e Professionalism

* Presentations:
 Mid-point and Final: Content, Organization, Presentation

* Reports:
* Level of details, quality of plan and progress

* Peer Evaluation:
* Professionalism, Initiative, team dynamics, communication, quality

Requirements (Review)

Requirements steps

* Heavyweight

T : * Document formal specification
1. Elicitation & analysis before beginning dgsign

* Lightweight
_ * Relevant requirements developed
2. Modeling during sprints

e But work out system-level
requirements upfront

o * Avoid specification unless
3. SpElelcatlon necessary
* Models, prototypes clearer to client
* Sometimes details are important

Types of Requirements

* Functional * Examples:
 What a product should do * "When a document link is visited,
* What a product should not do it shall display the document only

if the user is authorized to read it;

* Can be verified locall
Y otherwise, it shall display a

* Non-functional permissions error."
e Aka "quality requirements” * "Visual feedback from tapping a
* Property of system as a whole control shall be displayed within

100ms of contact."

* "Records of queries issued by
users shall be stored in an Oracle
database."

* Constraints
* Limits how the system can be built

Non-Functional
Requirements
Product Organizational External
Requirements Requirements Requirements
Effidency Dependability Security Regulatory Ethical
Requirements Requirements Requirements Requirements Requirements
Usability Environmental Operational Development Legislative
Requirements Requirements Requirements Requirements Requirements
Performance Space Accounting Safety/Seaurity
Requirements Requirements Requirements Requirements

Stories & scenarios

* Don’t start with formal
specifications
* Most clients can't relate to them
 Difficult to evaluate completeness

put devs, client on same
wavelength
* Describe actors and their goals
* High-level, "big picture"
e Lavish detail about context

* Helps crystalize alternative viewpoints

» Refocus by asking which details are
relevant

detail interactions with
system

* Agile user stories - narrative scenarios
with moderate detail

e QOften written on cards
e Devs break into tasks to estimate effort

* Prioritized by clients for inclusion in a
sprint

* Postponed stories may be revised with
minimal rework

e Structured scenarios provide more
detail

* Tool for clarifying requirements,
checking completeness

Interviews

 Difficult, but essential e Consider all stakeholders
* Tips: * Ask questions
* Allow plenty of time * "Why do you do things this way?"
* Prepare before meeting client * "Is this essential?"
e Keep full notes * Be wary — impact may not be
 Clarify what you do not obvious .
understand * "What are the alternatives?"

* Define domain-specific terminology
* Repeat what you hear

Usage scenarios (or Stories)

e |llustrates some interaction with * Must include:

a proposed system * Purpose
e Use Speciﬁc examples from a * User or transaction being followed
user's point of view * Assumptions about equipment

- : Steps of scenario
* Clarifies many functional P

requirements * Should consider (corner cases)
* What could go wrong

* Concurrent activities

* Changes to system state

* Avoid system details that pertain
to design

* Especially good for analyzing off-
nominal behavior

Poll: What kind of requirement is this?

* “We should migrate all our cloud-based backend services from Azure
to AWS”

* A: Functional

* B: Efficiency Requirements

* C: Ethical Requirements

* D: Development Requirements

PollEv.com/cs5150sp25

Lecture goals: Modeling

e Select appropriate models to improve communication during multiple
process steps (requirements, architecture, program design)

* Visualize models using UML (Unified Modeling Language)

Models

Purpose of models

e Simplification of reality

* Facilitates communication
during process steps
* Requirements
* Architecture (system design)
* Program design

* Need multiple models

* Different perspectives

» Different levels of completeness,
formality

e Larger, more complex projects
benefit from more formality

* Most models are consumed by
humans

Representing models

 UML: Unified Modeling
Language
 Models consist of and

* Many different diagram types
 Particularly well suited to object-
oriented design
e Can serve many purposes
* Facilitate discussion
* Provide documentation
* Generate code

* Why not code?

e Can have multiple models with
simplifications serving different
perspectives

* Code usually must pick a single
abstraction; can't manifestly show
correctness for other perspectives

e Code can introduce syntactic
distractions, platform details

 Sometimes, (pseudo)code is the
clearest specification

Modeling perspectives

* External * Structural
* Represent the (simplified) context How are system components
of the system wrt environment organized?

 How is data represented?
E.g., Class Diagrams

* Interaction * Behavioral
* How do user and component * How system responds to
interactions proceed? events, changes over time
* E.g., Use Cases, Sequence * E.g., Data flow Diagram,

Diagrams State/Transtion Diagrams

Interaction models

* Modeling user interactions helps catalog functional requirements
diagrams

 Modeling inter-system interaction helps highlight potential
communication problems

diagrams

Use cases

* Discrete task involving external
interaction with the system

L Actor Take exam
* Beneficiary or instigator : :
Actor View feedback
* May be other systems
 Use specific, not generic names =xamfaker
* Use case

Pair with textual description

* Metadata * Name: Take exam
* Name of use case * Goal: Enables a student to take an
* Goal of use case exam online with a web browser
e Actor(s)
iy * Actor(s): ExamTaker
* lrigger
e Preconditions * Trigger: ExamTaker is notified that
e Postconditions the exam is ready to be taken
 Flow of events * Preconditions: ExamTaker is
e Basic flow registered for course; ExamTaker
e Alternate flows has authentication credentials
* Exceptions * Postconditions: Completed exam is

ready to be graded

Basic flow ("Take exam" use case)

1. ExamTaker connects to server via web browser

2. Server checks whether ExamTaker is already authenticated; if not,
triggers authentication process

3. ExamTaker selects an exam from list

4. ExamTaker repeatedly selects a question and either types in a
new solution, edits an existing solution, or uploads a file with a
solution

5. ExamTaker either submits exam or saves current state

6. When exam is submitted, server checks that all questions have
been attempted and sends acknowledgement to ExamTaker

Discuss

* What could be some alternate or erroneous scenarios for the “Take
Exam” use case?

Alternative flows

Alternate flow

* Alternative path to successful
completion of use case

* Example: Take exam
* Resuming exam from saved state
 Solution file format not accepted
e Submission is incomplete

Exceptions
e Lead to failure of use case

* Example: Take exam
e Authentication failure

Relationships

<<extends>>

e Defer extra detail to other use
cases

e Useful for alternate flows and
exceptions

- - —<<extends>> _ _ - _ _!

ExamTaker
<<<<<<<<<<<

Authentication failure

<<includes>>

* Include steps from another use

case

e Useful when common procedure is
required in multiple contexts

Take exam

1
/ I - - - <<includes>> _ _ _

1
Authenticate

ExamTaker\ —————— <includes>> - - — _I
1
View feedback

Sequence Diagrams

* Show sequence of interactions Medical Receptionist

(O rd e rl n gl Causa | re | atlo ns h I pS) % P: PatientInfo D: Mentcare-DB AS: Authorization
between and objects " vewnto 1Dy | | |
* Excellent for documenting (KSR |
communication protocols cjinorize (info, :

* Networking examples: iut_hgﬁzat_io_n_ﬂ
https://www.eventhelix.com/net [|
WO rk| ng [authorization OK]) _pitiEnE igf(z o :

- _ - @ _ | 4 _|> |
[authorization fail] Error (no access) |
&
|

Sommerville, Software Engineering

https://www.eventhelix.com/networking
https://www.eventhelix.com/networking

Sequence Diagrams

* A more complex example

e Can be used for code
generation

Medical Receptionist

P: PatientInfo

D: MHCPMS5-DE

AS: Authorization

[Gendinfo]

Updateinfo() _

UpdateSummary()

Summarize (UID)

Update (PID)

Message (OK) |

[

Authorize (TF, UID)

Authorization

Y

Summary

Update (PID) _

— 1

— =+ —H

Behavioral Models

* Model dynamic behavior of e Data-driven models

system during execution Show sequence of processing

* How does system process steps from input to output

or respond to ?
* Event-driven models

* How does system respond to
events? (internal and external)

e Assumes finite number of
application

e Great for embedded, real-time
systems

Data flow (activity) diagrams

* Example Task: Chain of Processing in insulin pump software
e Activity: rounded rectangle

e Data: rectangle or labeled edge

» Data source/sink: rectangle

° Begin ning/end . Ci rcle Blood sugar N Get sensor Sensor Compute Blood sugar
sensor value data sugar level level
Calculate
insulin
delivery
Insulin Control Pump control C?Slrjrl?)te Insulin
um i
pump pump commands commands requirement

Sommerville, Software Engineering

Example: University Admissions

Acceptance

Application Completed
<

: form Assemble application
Applicant G > Evaluate

application
J

Rejection

Refined example

Acknowledgment

Application

form Completed

Rec_eive] application

O

Acknowledgment

Applicant documents J
A
Supporting
documents
O :
Pending

database

AND Evaluation
{ Begin] request
evaluation J
AND
Applicant
database

Refined example, continued

O

Rejection
Evaluation
request

O > Evaluation] Acceptance {Financial |Offer :
J aid

V4

Applicant
database

Special
request

How to specify logic?

e Data flow & sequence diagrams
show high-level flow; must be
augmented by specifications for

SAT >S1

low-level behavior

GPA>G1

SAT between S1 and S2

GPA between G1 and G2

e Decision table

Accept

* Process columns from left to right

Reject

* Rules are specific and testable
e Can be clearer to clients than code

Flowcharts and pseudocode

Flowchart

* Shows logic (not just flow)

* Used to specify computer
programs before modern
programming languages

New
applicant?

Form F
received ‘

New database
record

Update

 database [T

Notify
student

Application
complete?

Evaluate
Notify
student

Pseudocode
 Compact and precise

* Composable
* Easy to implement
* Harder to see flow

admin_decision (application)
if application.SAT == null then error (incomplete)
if application.SAT > S1 then accept(application)

else if application.GPA > G1 then accept(application)

else if application.SAT > S2 and application.GPA > G2
then accept(application)

else reject(application)

Mathematics

* Many systems are well- * Document progression of
described by mathematical approximations and domain
models transformations

 Differential equations * Frequency vs. time domain

* Probability distributions e Continuous vs. discrete

* Integrals * Differential vs. difference equations
° F”terS ¢ Integration VS. quadrature

* Root solve vs. Iteration

Interpolation
Curve fits * Higher-level specifications give

developers more flexibility, can
improve maintainability

State charts / Transition diagrams (Event
Driven Modeling)

 Model system as a finite set of poner Rl power
| do: set power
states =600

Timer

* A transition moves the system .{D N ﬁb

LEBE O] Full Set time
from one state to another

. Operation
time

power do: get number do: operate
exit: set time oven
* Triggered by a condition i, pomer VAR
. . power Timer ci)zce):i Cancel
 Mathematically, a function from o Star \
Sx C % S Half power o Enabled E:eo': Waiting ™
—> [l)Oord do: lc_:isp(;ay do: :!isplay
. . =300 close 'Ready’ ime
* Can be hierarchical :
. Disabled @
* Also useful for user interface

do: display
'Waiting'

navigation

Sommerville, Software Engineering

Transition tables

 Specify state transitions in
textual form

e Useful when transitions are
"dense" (most conditions are
applicable in most states)

* Example: physical buttons on
embedded device

e Can visually check for
completeness

Action> Half Power Full Power Timer Door Open Door
Close

Waiting Half Power Full Power

Full Half Power Set Time

Power

Half Set Time

Power

Reminders

* Try to use what you learned in this and previous classes in your
project plans

* Projects: Debug issues early
* A2: Debug issues early

* Waitlist/No Team: Please contact me

	Slide 1: Lecture 6: Models
	Slide 2: Administrative reminders
	Slide 3: Project Scoring Rubrics
	Slide 5: Requirements (Review)
	Slide 6: Requirements steps
	Slide 7: Types of Requirements
	Slide 8
	Slide 9: Stories & scenarios
	Slide 10: Interviews
	Slide 11: Usage scenarios (or Stories)
	Slide 13: Poll: What kind of requirement is this?
	Slide 14: Lecture goals: Modeling
	Slide 15: Models
	Slide 16: Purpose of models
	Slide 17: Representing models
	Slide 18: Modeling perspectives
	Slide 19: Interaction models
	Slide 20: Use cases
	Slide 21: Pair with textual description
	Slide 22: Basic flow ("Take exam" use case)
	Slide 23: Discuss
	Slide 24: Alternative flows
	Slide 25: Relationships
	Slide 26: Sequence Diagrams
	Slide 27: Sequence Diagrams
	Slide 28: Behavioral Models
	Slide 29: Data flow (activity) diagrams
	Slide 31: Example: University Admissions
	Slide 32: Refined example
	Slide 33: Refined example, continued
	Slide 34: How to specify logic?
	Slide 35: Flowcharts and pseudocode
	Slide 36: Mathematics
	Slide 37: State charts / Transition diagrams (Event Driven Modeling)
	Slide 38: Transition tables
	Slide 39: Reminders

