
Lecture 5:
Requirements

CS 5150, Spring 2025

1



Lecture goals

1. Understand and Document verifiable requirements

2. Elicit requirements from stakeholders

2



Administrative Reminders

• Teams have been formed (mostly)
• Should have selected team Client

• Fill up the survey if you still need a team

• Project plan due Fri (Feb 7)

• Schedule meeting with your client (Client info on canvas)

• For external client (Beware): Please try not to be too ambitious!

3



Course Grading

• Project: 60%
• Reports, Presentations, Code/Process quality, Client feedback, Peer 

Evaluations

• Assignments: 20%
• 4-5 assignments

• Attendance/Participation: 10%
• Attend 75% of classes, engage in class

• Exams: 10%
• Two in-class exams

4



Project plans
… continued from Lecture 4

5



Gantt charts

• Visualize plan for when activities actually take place
• Number of parallel activities limited by resources

• Can highlight critical path, slack time

CC-By-SA Dbsheajr at English Wikipedia
6



Risk management

1. Identify risks
• Brainstorm what could go wrong

2. Analyze risks
• Determine likelihood and 

consequence
• Prioritize based on "risk"

3. Plan
• Avoidance: reduce likelihood
• Mitigation: reduce consequence
• Contingency: "Plan B"

4. Monitor
• Update risks regularly

Better Embedded System Software. Koopman 2010
7



CS 5150 project plans

• Feasibility studies and project plans should be written
• Well-written, well-presented – review entire document
• Short enough that everybody reads it
• Long enough that no important topics are skipped

• A report that is not read and understood is not useful

• Keep in mind:
• Team availability, team skills
• Time constraints
• Equipment and software
• Start-up time
• Client availability
• Scope (not vague, not too ambitious)

8



Requirements

9



10



Requirements: Purpose

• What should a product do?

• What should a product not do?

• How is a product constrained?

• Take client's perspective
• Meeting requirements should 

provide meaningful visibility

• Not about design – "what", not 
"how"

• How should a product be 
tested?

• Risks of insufficient 
requirements documentation
• Client dissatisfaction

• Late discovery/rework

• Poor design tradeoffs

• Code is not a specification

11



Top reasons for project failure

Incomplete requirements 13.10%

Lack of user involvement 12.40%

Lack of resources 10.60%

Unrealistic expectations 9.90%

Lack of executive support 9.30%

Changing requirements & specifications 8.80%

Lack of planning 8.10%

System no longer needed 7.50%

• Failure to understand the 
requirements led developers to 
build the wrong system

The CHAOS Report (1994), The Standish Group
12



Subphases

1. Analysis: Establish functionality in consultation with stakeholders

2. Modeling: Organize requirements systematically

3. Definition/Specification: Record and communicate precise 
requirements

13



Heavyweight vs. Lightweight

Heavyweight

• Gather most requirements 
upfront

• Document requirements 
formally

Lightweight

• Start with system-level 
requirements

• Expand and refine requirements 
iteratively (e.g., for each sprint)
• Continual client interaction

Requirement still exist and should 
still be documented

14



Types of Requirements

• Functional
• What a product should do

• What a product should not do

• Can be verified locally

• Non-functional
• Aka "quality requirements"

• Property of system as a whole

• Constraints
• Limits how the system can be built

• Examples:
• "When a document link is visited, 

it shall display the document only 
if the user is authorized to read it; 
otherwise, it shall display a 
permissions error."

• "Visual feedback from tapping a 
control shall be displayed within 
100ms of contact."

• "Records of queries issued by 
users shall be stored in an Oracle 
database."

15



16



Exercise: Refining informal requirements

• "Customers should be able to enjoy the game on their laptop"

How to refine these requirements?

Power requirements (<= XY Watts)
GPU requirements (max 12GB GPU VRAM)
Different controllers
30fps

17



Validation & Verification

Validation

• "Are you building the right 
thing?"
• Would a system satisfying all of 

the requirements (and nothing 
else) meet the business need?

• Are assumptions in models 
consistent with reality?

• Involve client
• User testing
• Acceptance testing

Verification

• "Did you build it right?"
• Implementations should be 

verified against requirements
• Design can be verified by analysis
• Process can be verified by audits

• Testing
• Can define pass/fail criteria based 

on previous step

19



Requirements Definition

• Audience: Client AND developers

• CS 5150: Use future report/presentation to validate requirements 
with client
• "Our understanding of your requirements is that …"

20



Writing good requirements

• Must be verifiable
• Can it be measured?

• Use proxy measurements if needed

• Are tolerances specified?

• Can you design a test?
• Include pass/fail criteria

• Is it feasible? (to implement AND 
to verify)

• Must relate to client-relevant 
behavior

• Use consistent wording
• "Shall"

• "Should" if there are exceptions

• Consistent names for 
actors, interactions, events

• Use appropriate format
• Flow chart, decision table, ...

• Provide rationale
• Link to requirements being 

derived from or depended on

21



Poll: Is this a good requirement?

When the timer expires, the software shall increment 
16-bit integer variable `rollOverCount`.

PollEv.com/cs5150sp25

22



Improvement?

The system shall keep a count of how many timer 
expirations have occurred, with the ability to tally at 

least 15,000 expirations.

23



Realistic tolerances

"The game shall render 30 frames each second on a Nintendo Switch."

24



Tracking and tracing

Objective: facilitate verification, validation, revision

• Complete list

• Unique identifier

• Organized, cross-linked

• Linked to verification activities
• Separate document (e.g., verification matrix)

• Change review procedure

Runs/Tests T1 T2 T3 T4

R1 X X X

R2 X X

R3 X X

R4

26



Analysis

• Check for 
• Completeness 
• Consistency

• Example:
1. Telemetry shall be transmitted 

every 30 minutes.
2. The radio amplifier shall be 

powered off when <30% of battery 
charge remains.

• Example:
1. When a calendar is marked 

"private," its appointments shall 
not be visible to other users.

2. When booking a meeting, the 
interface shall suggest time slots 
during which all invited attendees 
are available.

27



Stakeholder & Viewpoint analysis

• Identify who is affected by the 
system (Viewpoints)
• Client

• Customers

• Users (many categories)

• Administrators

• Maintainers

• Effort often not proportional to 
utilization
• E.g., administrative capabilities are 

often much larger than user 
capabilities

28



Brainstorm: Viewpoints for university 
admissions system

29



Eliciting requirements

30



Interviews

• Difficult, but essential

• Tips:
• Allow plenty of time

• Prepare before meeting client

• Keep full notes

• Clarify what you do not 
understand
• Define domain-specific terminology

• Repeat what you hear

• Consider all stakeholders

• Ask questions
• "Why do you do things this way?"

• "Is this essential?"
• Be wary – impact may not be 

obvious

• "What are the alternatives?"

31



Negotiation and Prioritization

• Conflicts, and difficulties 
affecting cost and schedule, 
must be resolved with client
• Help client understand the 

tradeoffs

• Be open to suggestions

• Incremental delivery (e.g., Agile 
sprints) encourages regular 
prioritization

32



Stories & scenarios

• Don’t start with formal 
specifications
• Most clients can't relate to them
• Difficult to evaluate completeness

• Stories put devs, client on same 
wavelength
• Describe actors and their goals
• High-level, "big picture"
• Lavish detail about context

• Helps crystalize alternative viewpoints
• Refocus by asking which details are 

relevant

• Scenarios detail interactions with 
system
• Agile user stories - narrative scenarios 

with moderate detail
• Often written on cards
• Devs break into tasks to estimate effort
• Prioritized by clients for inclusion in a 

sprint
• Postponed stories may be revised with 

minimal rework

• Structured scenarios provide more 
detail
• Tool for clarifying requirements, 

checking completeness

33



Usage scenarios (or Stories)

• Illustrates some interaction with 
a proposed system

• Use specific examples from a 
user's point of view

• Clarifies many functional 
requirements

• Especially good for analyzing off-
nominal behavior

• Must include:
• Purpose
• User or transaction being followed
• Assumptions about equipment
• Steps of scenario

• Should consider (corner cases)
• What could go wrong
• Concurrent activities
• Changes to system state

• Avoid system details that pertain 
to design

34



Developing scenarios with clients

• Choose a viewpoint

• Identify purpose, 
actors, equipment, procedure

• Ask clarifying questions

• Example: online exam system

35



Online exam system: Viewpoints?

36



Online exam system scenario: typical student

• Purpose: Describe how a typical student uses the system to take an 
exam.

• User:

• Equipment:

• Steps:

37



Modeling requirements

39



Requirements Modeling

• Need to bridge requirements 
and design
• Leverage abstraction

• Exploit patterns

• Identify invariants

• Improve precision

• UML

• Use cases

• Activity and flow diagrams

• State charts

• …

• Future lecture

Read Ian Sommerville’s book: Chapter 4 and 5

40



Requirements steps

1. Elicitation & Analysis

2. Modeling

3. Specification

• Heavyweight
• Document formal specification 

before beginning design

• Lightweight
• Relevant requirements developed 

during sprints
• But work out system-level 

requirements upfront

• Avoid specification unless 
necessary
• Models, prototypes clearer to client
• Sometimes details are important

41



42


	Slide 1: Lecture 5: Requirements
	Slide 2: Lecture goals
	Slide 3: Administrative Reminders
	Slide 4: Course Grading
	Slide 5: Project plans
	Slide 6: Gantt charts
	Slide 7: Risk management
	Slide 8: CS 5150 project plans
	Slide 9: Requirements
	Slide 10
	Slide 11: Requirements: Purpose
	Slide 12: Top reasons for project failure
	Slide 13: Subphases
	Slide 14: Heavyweight vs. Lightweight
	Slide 15: Types of Requirements
	Slide 16
	Slide 17: Exercise: Refining informal requirements
	Slide 19: Validation & Verification
	Slide 20: Requirements Definition
	Slide 21: Writing good requirements
	Slide 22: Poll: Is this a good requirement?
	Slide 23: Improvement?
	Slide 24: Realistic tolerances
	Slide 26: Tracking and tracing
	Slide 27: Analysis
	Slide 28: Stakeholder & Viewpoint analysis
	Slide 29: Brainstorm: Viewpoints for university admissions system
	Slide 30: Eliciting requirements
	Slide 31: Interviews
	Slide 32: Negotiation and Prioritization
	Slide 33: Stories & scenarios
	Slide 34: Usage scenarios (or Stories)
	Slide 35: Developing scenarios with clients
	Slide 36: Online exam system: Viewpoints?
	Slide 37: Online exam system scenario: typical student
	Slide 39: Modeling requirements
	Slide 40: Requirements Modeling
	Slide 41: Requirements steps
	Slide 42

