
CS 5150, Spring 2025

Lecture 3: Teams

1

Lecture goals

1. Select an appropriate development methodology for a project
• … (Lecture 2)

• Agile methods and eXtreme Programming

• Mixed methodologies

2. Work effectively on a development team
• Team size

• Roles, personalities, and growth

• Meetings

• Retrospectives and peer evaluation

• Collaboration tools

2

Upcoming Deadlines

• Fri, Jan 31: Submit assignment A1

• Mon, Feb 3: Team Formation. Submit Team Registration Survey.

• Last day to propose external projects and form teams;
complete team formation survey

• Fri, Feb 7: Project plan due

• In-Class exams: Mar 27, May 1

Once you have formed a complete team, you will be assigned a client
for internal project.

3

Development methodologies
… continued from Lecture 2

4

Review

• Waterfall & Modified waterfall

• Iterative refinement
• Essential for user interfaces

• Incremental Delivery
• Good for evolving working systems

• Example: Microsoft Windows

5

The Waterfall model

 e uirement

 tem de i n

 ro r m te n

 er on m inten nce

 ro r m de i n

 m ement on (codin)

 cce t nce re e e

 e i i it tud

6

Modified Waterfall model

 e uirement

 tem de i n

 ro r m te n

 er on m inten nce

 ro r m de i n

 m ement on (codin)

 cce t nce re e e

 e i i it tud
Waterfall model with
feedback

7

Agile Methods vs Plan-Driven Methods

Heavyweight / Plan-driven

• Processes and tools

• Specifications

• Following a plan

• Client negotiation/contracts

Lightweight / Agile

• Individuals and interactions

• Working software

• Responding to change

• Client collaboration

Based on the Manifesto for Agile Software Development
http://agilemanifesto.org/8

http://agilemanifesto.org/

eXtreme Programming (XP)

Focus on development step

• User stories for requirements
• Improves communication

• Incremental planning

• Small releases
• Improves visibility

• Simple design

• Test-first development
• Shifts left

• Periodic refactoring

• Pair programming
• Shifts left

• Collective ownership

• Continuous integration
• Shifts left

• On-site customer
• Improves communication

9

eXtreme Programming (XP)

Software Engineering, Tenth Edition. Sommerville 2014
10

Scrum Implementation of Agile

• Provides Agile management structure that accommodates XP

• Work scheduled as "time boxes" (sprints)
• 2-4 weeks

• Tasks selected from backlog
• Incomplete work is not automatically carried over

• Sprint product is released, production-quality code + docs
• Sprint planning defines an MVP

• Daily team meetings

11

Scrum workflow

Software Engineering, Tenth Edition. Sommerville 2014
12

Agile methods

Benefits

• Good visibility and
communication

• Accommodates change, fuzzy
requirements

• Very popular today for small,
dynamic projects

Challenges

• Tricky to scale to large projects,
bureaucratic organizations

• Works best with highly-skilled,
autonomous developers

• Hard to validate requirements
for completeness

• Lack of formal docs impedes
maintenance, handoff

13

Integration and configuration

• When system design is standardized, can better take advantage of
code reuse

• Providers collect lots of configurable components into commercial-
off-the-shelf (COTS) products
• E.g. Enterprise Resource Planning (ERP) platforms

• Developers integrate, configure components based on client
requirements
• Effectively skip system design and program development steps

Pros
• Reduced cost and time

Cons
• Reduced function

14

Poll

What methodology was used for the FAA AAS?

Was this an appropriate choice?

PollEv.com/cs5150sp25

15

Mixed processes

Many projects mix elements of multiple methodologies

• If requirements are well-understood, might use Waterfall to define
requirements & system design, then implement using Incremental
Delivery performed in Scrum-like sprints

• If requirements are vague, might use Iterative Refinement to clarify
requirements, followed by Modified Waterfall to build final version
(prototype is discarded)
• Might Integrate & Configure a COTS platform for prototype

• Might develop user interface with iterative refinement, but adopt
another process for data store

16

Phased Development

• Decide at the outset to divide a project into multiple phases
• First phase product is quickly brought into (limited) production

• Subsequent phases based on experience from first phase

• Advantages
• Early benefit from initial investment

• Clarifies requirements for later phases

• Costs can be spread out (or subsequent phases can be cancelled)

17

Summary

• Different development processes are appropriate for different projects
• Processes can evolve during a project

• Processes include common process steps

• Processes must accommodate revision of prior steps

• Purpose of process is to minimize risk. Risk-reduction practices include:
• Prototyping key components

• Frequent releases, or decomposition into phases

• Early and iterative testing with users/customers

• Promoting visibility

18

Summary

• Heavyweight: Discourages change; more effort upfront to be
confident in design choices
• Beneficial if system has many inter-related components

• Example use: Lockheed Martin

• Lightweight: Accommodates requirements uncertainty
• Iteration can clarify requirements

• Agility can respond to novel markets

• Example use: Amazon

19

Teams

20

Why develop in teams?

• Large projects require many
people
• Need to deliver while still relevant

• Diversity of ideas, peer review
improve quality

• Utilize many different skillsets
• Managerial

• Administrative

• Writing

• Domain expertise

• Multi-person development
requires collaboration
• Disseminate knowledge

• Avoid duplicated effort, support

• Respect dependency, priority
order

• Clarify interfaces

• Encourage accountability

• Satisfy esteem needs

21

Teams should be small

• Number of pairwise
communication paths is quadratic
in team size

• Cannot understand full system,
keep pace with all updates

• Need efficient meetings, decisions

• Quality benefits from consistency

• UpShot: effective teams have 4-
10 members; sweet spot is
around 7
• Consistent with CS 5150 team size

requirements (4-5 students)

• Example: Microsoft
• 3-5 dev sub-teams; Product: 20-30

22

The Mythical Man-Month

• Development effort often measured in person-months
• How much does one developer accomplish in one month?

• Suggests that work could be sped up by adding more
developers

• Brook ’ w: “ ddin m n ower to te oftw re
 roject m ke it ter”
• Onboarding time

• Communication overhead

• Indivisible tasks

23

Poll: PollEv.com/cs5150sp25

Which plot shows how project duration varies with manpower for a
partitionable task without complex interdependencies that
requires onboarding?

24

Roles (for CS 5150)

• No “te m e der”
• Project is a shared responsibility
• Team decisions by consensus

• Team point-of-contact
• Communicates with client

(scheduling, reports)
• Communicates with course staff

• Project manager
• Maintains schedule
• Monitors risks
• Does not dictate tasking
• May rotate

• Toolsmith
• Infrastructure expert (DevOps)

Roles during meetings:

• Moderator

• Recorder

25

Developer strengths & motivations

Bass & Duntem n’ taxonomy:

• Task-oriented

• Self-oriented

• Interaction-oriented

Efficiency

Knowledge

ThoroughnessCommunication

Initiative

26

Developer Growth

• Mentorship

• Training

• Self-learning

• Documentation

• Reviews

• Goals (w/ manager assistance)

• Osmosis (slow, shallow)

• At a point in time, some devs
may be much more productive
than others

• But all devs have the potential
to become more productive
• Maximize benefit by "leveling up"

early

• "Teach a man to fish" parable

• Will get most out of this course
by leveling up your whole team

27

Discuss: Team Disfunctions

What problems do you anticipate in your project team?

1. Absence of trust

2. Fear of conflict

3. Lack of commitment

4. Avoidance of accountability

5. Inattention to results

28

Productivity Slang

Yak shaving

Spending lots of time on
tangential tasks/reading

• k “wou d te mm te ree
thi i re nece r ?”

• Should bring real (not
hypothetical) benefits to project

• Prioritize simplicity

Bike-shedding

Endlessly debating concrete but
insignificant details

• Spinoff discussion for those with
strong opinions

• Executive decision, then move
on

• Prioritize addressing largest
technical risks

29

Setting expectations

• Avoid misunderstandings,
disappointment by setting clear
expectations
• Capture in writing

• Be consistent, firm when
expectations are not met
• Address acute issues ASAP

• Address persistent, lingering issues
at retrospectives

• Communicate often, ask for help

• Consider a "team charter"

30

Meetings

• High-bandwidth, high-visibility
synchronous communication

• Expensive in terms of person-hours

• ee John C ee e’ Meetings, Bloody
Meetings

Tips

• Have an agenda

• Circulate agenda + docs ahead of
time

• Record action items

• Review previous action items

• Spin off detailed discussions if not
relevant to all or not prepared for

• Avoid status reports

• Beware slides

31

Client Communication

• Respect client's time
• Unless client requests chat-like

communications, try to batch
questions

• Come prepared, stick to
agenda, respect end time

• Prefer synchronous meetings
• Higher bandwidth

• Lower error rate

• Messages should go through
point-of-contact

• Meetings should include most of
development team
• No one-on-one meetings

• Need multiple viewpoints

• Separate moderator from recorder

32

Retrospectives/postmortems

• Process improvement

• Retrospectives are regular
• Like milestones, phased

development – gates for
evaluation, corrective action

• Postmortems come after an
incident

33

Peer Review

Rubric will evaluate the following:

• Professionalism
• Attendance/promptness

• Preparation for meetings

• Respectful interactions

• Quality of contributions

• Effective communication
• Reports problems early

• Communicates clearly

• Initiative
• Contributes to brainstorming

• Volunteers for tasks

• Healthy team dynamics
• Raises and resolves conflicts

• Trusts other members, helps them
grow

35

Collaboration tools

• Version control

• Issue tracking

• Documentation (wiki?)

• Collaborative editing

• Iteration planning

• Project planning

• Code review

• Q&A

• Chat

36

Free tools

Cornell

• GitHub
• Issue tracking & iteration planning

• Wiki

• Code review

• Google docs
• Collaborative authoring & review

• Email
• Communication

External

• Jira
• Issue tracking & project planning

• Trello
• Iteration planning

• Monday
• Task tracking & project planning

• Slack
• Chat

37

Assignment

• Form teams, select projects, fill out survey

38

	Slide 1: Lecture 3: Teams
	Slide 2: Lecture goals
	Slide 3: Upcoming Deadlines
	Slide 4: Development methodologies
	Slide 5: Review
	Slide 6: The Waterfall model
	Slide 7: Modified Waterfall model
	Slide 8: Agile Methods vs Plan-Driven Methods
	Slide 9: eXtreme Programming (XP)
	Slide 10: eXtreme Programming (XP)
	Slide 11: Scrum Implementation of Agile
	Slide 12: Scrum workflow
	Slide 13: Agile methods
	Slide 14: Integration and configuration
	Slide 15: Poll
	Slide 16: Mixed processes
	Slide 17: Phased Development
	Slide 18: Summary
	Slide 19: Summary
	Slide 20: Teams
	Slide 21: Why develop in teams?
	Slide 22: Teams should be small
	Slide 23: The Mythical Man-Month
	Slide 24: Poll: PollEv.com/cs5150sp25
	Slide 25: Roles (for CS 5150)
	Slide 26: Developer strengths & motivations
	Slide 27: Developer Growth
	Slide 28: Discuss: Team Disfunctions
	Slide 29: Productivity Slang
	Slide 30: Setting expectations
	Slide 31: Meetings
	Slide 32: Client Communication
	Slide 33: Retrospectives/postmortems
	Slide 35: Peer Review
	Slide 36: Collaboration tools
	Slide 37: Free tools
	Slide 38: Assignment

