T

¥l
’/

1

’ By
i i 2
Il -
f g —

Lecture 3: Teams

CS 5150, Spring 2025

Lecture goals

1. Select an appropriate development methodology for a project
* ...(Lecture 2)
e Agile methods and eXtreme Programming
* Mixed methodologies

2. Work effectively on a development team
* Team size
* Roles, personalities, and growth
* Meetings
Retrospectives and peer evaluation
Collaboration tools

Upcoming Deadlines

* Fri, Jan 31: Submit assignment Al
* Mon, Feb 3: Team Formation. Submit Team Registration Survey.

 Last day to propose external projects and form teams;
complete team formation survey

* Fri, Feb 7: Project plan due
* In-Class exams: Mar 27, May 1

Once you have formed a complete team, you will be assigned a client
for internal project.

Development methodologies

Review

e Waterfall & Modified waterfall

* lterative refinement
e Essential for user interfaces

* Incremental Delivery

* Good for evolving working systems
* Example: Microsoft Windows

The Waterfall model

Feasibility study

N\
Requirements
N\
System design
N\
Program design
N\
Implementation (coding)
N\
Program testing
N\
Acceptance & release

AN

Operation & maintenance

Modified Waterfal

| model

Feasibility study

Waterfall model with

feedback
A N\
Requirements
A N
System design
A N
Program design
A N\
Implementation (coding)
A N
Program testing
N
Acceptance & release
I N
y y y y Operation & maintenance

Agile Methods vs Plan-Driven Methods

Heavyweight / Plan-driven
* Processes and tools

 Specifications
* Following a plan
* Client negotiation/contracts

Lightweight / Agile

* Individuals and interactions
* Working software

* Responding to change

* Client collaboration

Based on the Manifesto for Agile Software Development
http://agilemanifesto.org

http://agilemanifesto.org/

eXtreme Programming (XP)

Focus on * Periodic refactoring

e User stories for requirements * Pair programming
* Improves communication Shifts left

* Incremental planning * Collective ownership

* Small releases e Continuous integration
* Improves visibility Shifts left

e Simple design * On-site customer

e Shifts left

eXtreme Programming (XP)

Select User
Stories for this
Release

Break Down

Stories to Tasks Plan Release

Develop/
Integrate/
Test Software

Evaluate Release
System Software

10
Software Engineering, Tenth Edition. Sommerville 2014

Scrum Implementation of Agile

* Provides Agile management structure that accommodates XP

* Work scheduled as "time boxes" (sprints)
e 2-4 weeks

* Tasks selected from backlog
* Incomplete work is not automatically carried over

* Sprint product is released, production-quality code + docs
* Sprint planning defines an MVP

* Daily team meetings

Scrum workflow

—

to be done

(Review work

Select
items

Plan
sprint

Product
backlog

Review
sprint

Sprint
backlog

Potentially
shippable
software

12
Software Engineering, Tenth Edition. Sommerville 2014

Agile methods

Benefits Challenges

* Good visibility and * Tricky to scale to large projects,
communication bureaucratic organizations

e Accommodates change, fuzzy * Works best with highly-skilled,
requirements autonomous developers

* Very popular today for small, * Hard to validate requirements
dynamic projects for completeness

* Lack of formal docs impedes
maintenance, handoff

Integration and configuration

* When system design is standardized, can better take advantage of
code reuse

* Providers collect lots of configurable components into commercial-
off-the-shelf (COTS) products

* E.g. Enterprise Resource Planning (ERP) platforms

* Developers integrate, configure components based on client
requirements

 Effectively skip system design and program development steps

Pros
e Reduced cost and time

Cons
e Reduced function

14

Poll

What methodology was used for the FAA AAS?
Was this an appropriate choice?

PollEv.com/cs5150sp25

Mixed processes

Many projects mix elements of multiple methodologies

* If requirements are well-understood, might use Waterfall to define
requirements & system design, then implement using Incremental
Delivery performed in Scrum-like sprints

* If requirements are vague, might use Iterative Refinement to clarify
requirements, followed by Modified Waterfall to build final version
(prototype is discarded)

* Might Integrate & Configure a COTS platform for prototype

* Might develop user interface with iterative refinement, but adopt
another process for data store

Phased Development

e Decide at the outset to divide a project into multiple phases

* First phase product is quickly brought into (limited) production
* Subsequent phases based on experience from first phase

* Advantages
* Early benefit from initial investment
 Clarifies requirements for later phases
* Costs can be spread out (or subsequent phases can be cancelled)

Summary

 Different development processes are appropriate for different projects
* Processes can evolve during a project
* Processes include common process steps
* Processes must accommodate revision of prior steps

* Purpose of process is to minimize risk. Risk-reduction practices include:
* Prototyping key components
* Frequent releases, or decomposition into phases
e Early and iterative testing with users/customers
* Promoting visibility

Summary

* Heavyweight: Discourages change; more effort upfront to be
confident in design choices
* Beneficial if system has many inter-related components
* Example use: Lockheed Martin

* Lightweight: Accommodates requirements uncertainty
* |teration can clarify requirements
* Agility can respond to novel markets
* Example use: Amazon

Teams

Why develop in teams?

e Large projects require many * Multi-person development
people requires collaboration
* Need to deliver while still relevant * Disseminate knowledge
 Diversity of ideas, peer review » Avoid duplicated effort, support
improve quality * Respect dependency, priority
e Utilize many different skillsets order

* Managerial

e Administrative

* Writing

* Domain expertise

Clarify interfaces
Encourage accountability
Satisfy esteem needs

Teams should be small

* Number of pairwise e UpShot: effective teams have 4-
communication pathsis quadratic 10 members; sweet spot is
in team size around 7

e Cannot understand full system, * Consistent with CS 5150 team size

keep pace with all updates requirements (4-5 students)

* Need efficient meetings, decisions
* Example: Microsoft

* Quality benefits from consistency
e 3-5 dev sub-teams; Product: 20-30

The Mythical Man-Month

* Development effort often measured in person-months

* How much does one developer accomplish in one month? the
Suggests that work could be sped up by adding more St
developers Esot7 on Sotwacs Enlneat

* Brooks’s law: “adding manpower to a late software
project makes it later”
* Onboarding time
e Communication overhead
* Indivisible tasks

Frederick P, Brooks, Jr.

First edition
23

Poll: PollEv.com/cs5150sp25

Which plot shows how project duration varies with manpower for a
partitionable task without complex interdependencies that
requires onboarding?

ee

24

Roles (for CS 5150)

* No “team leader” * Toolsmith
* Project is a shared responsibility * Infrastructure expert (DevOps)
 Team decisions by consensus

* Team point-of-contact

* Communicates with client
(scheduling, reports) * Moderator

e Communicates with course staff e Recorder

* Project manager
* Maintains schedule
* Monitors risks
* Does not dictate tasking
* May rotate

Roles during meetings:

Developer strengths & motivations

Efficiency

Initiative X(Knowledge

Communication

Thoroughness

Bass & Dunteman’s taxonomy:
* Task-oriented
* Self-oriented
* Interaction-oriented

Developer Growth

* Mentorship e At a point in time, some devs
may be much more productive

* Trainin
5 than others

* Self-learnin
® * But all devs have the potential

to become more productive

* Reviews * Maximize benefit by "leveling up"
early

e "Teach a man to fish" parable

e Documentation

* Goals (w/ manager assistance)

 Osmosis (slow, shallow , ,
() * Will get most out of this course

by leveling up your whole team

Discuss: Team Disfunctions

What problems do you anticipate in your project team?
1. Absence of trust

Fear of conflict

Lack of commitment

Avoidance of accountability

A

Inattention to results

Productivity Slang

Yak shaving

Spending lots of time on
tangential tasks/reading

* Ask “would teammates agree
this is really necessary?”

* Should bring real (not
hypothetical) benefits to project

* Prioritize simplicity

Bike-shedding

Endlessly debating concrete but
insignificant details

 Spinoff discussion for those with
strong opinions

e Executive decision, then move
on

* Prioritize addressing largest
technical risks

Setting expectations

* Avoid misunderstandings,
disappointment by setting clear
expectations

* Capture in writing

e Be consistent, firm when
expectations are not met
 Address acute issues ASAP

* Address persistent, lingering issues
at retrospectives

 Communicate often, ask for help
e Consider a "team charter"

Meetings

* High-bandwidth, high-visibility Tips

synchronous communication * Have an agenda

 Circulate agenda + docs ahead of
time

* See John Cleese’s Meetings, Bloody * Record action items
Meetings

* Expensive in terms of person-hours

* Review previous action items

* Spin off detailed discussions if not
relevant to all or not prepared for

* Avoid status reports
* Beware slides

Client Communication

* Respect client's time * Messages should go through
* Unless client requests chat-like point-of-contact
communications, try to batch * Meetings should include most of
questlons

development team

* No one-on-one meetings

. * Need multiple viewpoints
* Prefer synchronous meetings * Separate moderator from recorder

* Higher bandwidth
* Lower error rate

 Come prepared, stick to
agenda, respect end time

Retrospectives/postmortems

* Process improvement

* Retrospectives are regular

 Like milestones, phased
development — gates for
evaluation, corrective action

* Postmortems come after an
incident

Peer Review

Rubric will evaluate the following: e Initiative
e Contributes to brainstorming

* Professionalism
* VVolunteers for tasks

« Attendance/promptness

* Preparation for meetings * Healthy team dynamics
* Respectful interactions e Raises and resolves conflicts
* Trusts other members, helps them

* Quality of contributions
grow

* Effective communication
e Reports problems early
« Communicates clearly

Collaboration tools

* Version control

* |ssue tracking

e Documentation (wiki?)
* Collaborative editing

* lteration planning

* Project planning

* Code review

* Q&A

* Chat

Free tools

Cornell External
* GitHub * Jira
* Issue tracking & iteration planning * Issue tracking & project planning
* Wiki * Trello

* Code review * Iteration planning

* Google docs * Monday

* Collaborative authoring & review e Task tracking & project planning

* Email * Slack
* Communication e Chat

Assignment

* Form teams, select projects, fill out survey

	Slide 1: Lecture 3: Teams
	Slide 2: Lecture goals
	Slide 3: Upcoming Deadlines
	Slide 4: Development methodologies
	Slide 5: Review
	Slide 6: The Waterfall model
	Slide 7: Modified Waterfall model
	Slide 8: Agile Methods vs Plan-Driven Methods
	Slide 9: eXtreme Programming (XP)
	Slide 10: eXtreme Programming (XP)
	Slide 11: Scrum Implementation of Agile
	Slide 12: Scrum workflow
	Slide 13: Agile methods
	Slide 14: Integration and configuration
	Slide 15: Poll
	Slide 16: Mixed processes
	Slide 17: Phased Development
	Slide 18: Summary
	Slide 19: Summary
	Slide 20: Teams
	Slide 21: Why develop in teams?
	Slide 22: Teams should be small
	Slide 23: The Mythical Man-Month
	Slide 24: Poll: PollEv.com/cs5150sp25
	Slide 25: Roles (for CS 5150)
	Slide 26: Developer strengths & motivations
	Slide 27: Developer Growth
	Slide 28: Discuss: Team Disfunctions
	Slide 29: Productivity Slang
	Slide 30: Setting expectations
	Slide 31: Meetings
	Slide 32: Client Communication
	Slide 33: Retrospectives/postmortems
	Slide 35: Peer Review
	Slide 36: Collaboration tools
	Slide 37: Free tools
	Slide 38: Assignment

