Lecture 2:
Projects & Processes

CS 5150, Spring 2025

Admin Stuff

* Project Team Matching Survey * Firehose upfront

* Need to cover all the basics so you
. . o can write your project plan
* See internal project descriptions + Concepts are high-level, abstract;

e Canvas tour try to correlate them with a
concrete example (like FAA AAS)

* Team-forming threads

Project

* How do | pick a project?
e Consider this as an opportunity to learn something new (e.g., new language)
* Do not go into a project where you are not familiar with anything!

 How do | pick a team/teammates?
e Consider working style preferences, program,
* |dentify complementary skill-set (front-end/backend, source/target language)

Variety

Software is required to serve many

different purposes ... e Commerce

* Control systems e Science

* Embedded * Engineering

. . e Multimedia & entertainment
* Operating systems & drivers

* Developer tools * Creativity

* Data processing * Productivity

* Information systems

Variety (cont.)

... in many different settings ...

* Embedded firmware
 RTOS

e PC

 Smartphone

* Web browser

* Supercomputer

* Virtualized servers

* Cloud

... for many different people.
* Yourself

* Consumers

* Professionals

* B2B

* Employer/colleagues
* Government agencies
* Prime contractors

* General public

... requires versatility

Consequently, there is no “best” way to create software in all cases
* No best operating system

* No best programming language

* No best framework or architecture

* No best development environment/tools

* No best methodology/process

A software engineer must know a wide variety of methods & tools and
select appropriate ones for the project at hand

Project stakeholders

* First step in any project:

identify the stakeholders

* Who sets requirements?

Who decides priorities?
Who will use your software?
Who is affected by your software?
Who writes the check?
* Who takes the fall?

 Stakeholder interests are not always aligned

Stakeholders: Developers

* You are a stakeholder
* You have to work with the code
* You have to support the system
* Your reputation is on the line

* You are also an (expensive)
resource

* Biggest cost of software is salaries
of development team

* You have responsibilities
* Competence
e Confidentiality
* Legal compliance (e.g., FERPA)
* Acceptable use & misuse

Stakeholders: Client

* Provides resources in exchange * Client sets requirements

for having the software * Though developers must elicit
developed them

* Bears risk in event of project * Client sets priorities
failure

* Client satisfaction is primary
measure of project success

Example: business-to-business

Nikon contracts with Nik Software
to co-develop “Nikon Capture NX”,
a digital photo editor sold to users

of Nikon cameras
e Developer: Nik Software

* Client: Nikon (specifically, a
product manager in their
imaging business division)

9
g
7
X
)

=~

7 .
1111111 8
T

Poll

Who is the client for general-purpose software products?

PollEv.com/cs5150sp25

Stakeholders: Customer, User, Society

e Customer: buys the software or selects it for use by an organization
e User: Actually uses (interfaces with) the software

e Society: may be affected by the software
* Often not represented when stakeholders are consulted

e Advisable to appoint an advocate for their interests
* Automated processes tend to become invisible
* Risks to society should be identified and acknowledged

Activity: Stakeholders

1. Turn to your neighbor

2. ldentify the stakeholders (, ,

1. canvas.cornell.edu
2. FAA’s Advanced Automation System

)) for:

3. Select a reporter to share results

(3 minutes)

Risk

* All projects require tradeoffs between function, cost, and time

* Many projects encounter difficulties:
* Does not work as expected (function)
e Over budget (cost)
e Behind schedule (time)

* Who should set priorities when deciding tradeoffs?
* The client bears the cost of the project
* The client bears the risks of project failure

* The client should be given the information necessary to make an informed
decision based on their priorities

Consequences

* Failed projects have serious , , ,
Apple Maps service loses train stations,

consequences . .
_ shrinks tower and creates new airport
e Can bankrupt companies
e Mana gers can lose their J obs Significant glitches reported in service that replaces Google

e Users and society may be harmed

* Example: Apple Maps 2012;
Maps chief fired

https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower

15

https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower

Minimizing risk — communication

e As much as half of delivered
software is never used

* Developers build the “wrong
software” — doesn’t meet client’s
needs

* Developer must work to
understand client, customer, and
user expectations

* Developer may add technical
insights, but client satisfaction is
the primary measure of success

Minimize risk with communication
* Feasibility study

* Requirements and design
(separated)

* Milestones & releases
e User & acceptance testing
e Handover

Minimizing risk — visibility

* Those responsible for the project ¢ In CS 5150, you will provide

(client, managers) must know visibility via regular progress
what is happening reports
* But most developers ... * Working software provides good
 Have trouble evaluating progress visibility
* Tend to be overly optimistic * Promoted by Agile methods
* Consider logging/reporting to be * But be upfront about limitations

unnecessary overhead

e Large projects are worse
* Dilution at every level of hierarchy

Improving visibility — short dev cycles

e Risk accumulates with time since last check-in

e Deliver working software frequently (weeks rather than months, or
even continuously)
* Clients, customers, & users can evaluate work
* Opportunity to adapt to new circumstances
* Promoted by Agile methods

Minimizing risk — management

* Project management * Development processes
* Track progress against schedule * Enforce best practices to minimize
e Prioritize tasks risk without excessive overhead

* Improve visibility
* Facilitate team productivity
e Ensure quality

* Personnel management

* Allocate the right number of
developers with the right skills at
the right time

* Ensure that developers have a
productive work environment

 Compliance advising

* Understand legal, regulatory,
economic environment

Development processes

 Example process decisions: * Tradeoff between risk reduction

 How requirements are tracked and overhead

 How tasks, issues are tracked & Effectiveness, cost depend on tool
prioritized support, developer skill, culture

 How software versions are * |nitial risk depends on project size
controlled * Risk tolerance depends on

* Code review mandates application

* Test coverage mandates « Must adapt process to each

* Amount, timing of documentation project

* Frequency, style of meetings

* What metrics are collected Aim to Improve processes

throughout project

Process steps

* Project specifics are different, * Feasibility & planning
but they need to address similar

, * Requirements
issues

.. * System & interface design
* Process decisions should be

adopted to address common * Program developmenjc
process steps * Includes program design

* Acceptance and release

paleaday

» Note: testing & documentation ~ °* OPerations and maintenance

occur in many steps

Overview of steps

* Feasibility * Requirements
* Define scope e Define function of system from
e Catalog benefits, risks client’s viewpoint
e Evaluate technical feasibility * Establish constraints ("non-

functional requirements")

 Elicit from consultation with client,
customer, users

* Self-contained study or incremental

Select development process

Estimate cost, schedule, resource
availability

Decide: go/no-go

Overview of steps (cont.)

» System & interface design * Program development
e Select an architecture that * May start with documenting
supports requirements program design (class & function
e User interfaces must be iteratively definitions)
evaluated with users * Coding!
* What you already know how to do
* Architectural integrity is key to * May incorporate testing

maintainable systems

Overview of steps (cont.)

* Acceptance & release

* Product is verified against
requirements by the client

* |deally with selected customers &
users

* Complete system (with
documentation) delivered to client

* Deployed in production, marketed to
customers

* Operation & maintenance
* System is kept running smoothly

* Bugs discovered and fixed in
production

* New features proposed and
integrated (requirements change)

* May eventually be phased out

Activity: FAA AAS Discuss

Which steps were handled poorly
for the FAA's Advanced
Automation System?

(3 minutes)

Feasibility & planning
Requirements

System & interface design

Program development
Acceptance and release

Operations and maintenance

26

Software Methodologies

* Can organize sets of process * Heavyweight
decisions by how they address * Fully complete (and document)
the common process steps each step before moving on
* Formal vs. informal * Avoid revisions to work done in
* Do steps have pre-defined outputs? previous steps
* Duration and ordering e Lightweight

* Schedule work in “time boxes”
that include multiple process steps

* Avoid formal documentation to
more easily accommodate
changes

Heavyweight vs lightweight methodologies

Heavyweight Lightweight
* Processes and tools * Individuals and interactions
 Specifications * Working software
* Following a plan * Responding to change
* Client negotiation * Client collaboration

Based on the Manifesto for Agile Software Development
http://agilemanifesto.org4

http://agilemanifesto.org/

Waterfall model: Origins

* Based on traditional engineering
project management

* Long lead time for supplies; must
commit to large orders

e Extremely expensive to change
hardware once built, BoM once
ordered

e Extremely expensive to pause
manufacturing

At this time in software history,

well understood
(automating manual processes)

* Little variety in

e Coding was very tedious (no
modern languages/tools) —
benefits from detailed program
design

* Good match for a heavyweight
process

The waterfall model

Feasibility study

N\
Requirements
N\
System design
N\
Program design
N\
Implementation (coding)
N\
Program testing
N\
Acceptance & release

AN

Operation & maintenance

30

Cost of defects

Phase in Which a
Defect Is Introduced

Requirements \ 'A/—L/

5 N_ 4
Architecture \ 2/\ < >/,>/
Construction \ \ \ ,)< - \

Requirements . Construction - Post-Release
{ Architecture System Test

Cost

Phase in Which a Defect Is Detected

31
Code Complete, 2nd Edition. McConnell 2004

Shift left

* QA is difficult without a working
system

e But working systems aren’t
available until the end of a
waterfall process

* Process decisions can effectively
shift QA left without requiring
formal deliverables after each
step

250
NUMBER 200

DEFECTS 190

FOUND 100
50 | NO REVIEWS
0 llllll

WITH PEER REVIEWS

n %) z [a] z w z £
E E % (9 wz () = @) 0
-5 ¥Z Mg 22 £ B, g b
o= <> Eu =0 w i on 3% S
=] = =9 e Qz = Of= =0
P o om o Qu =] w2
= = i o= = = <
nZ o = i z 5
o o0 Ty = =) = (>/"0.
) o T
(4 14 = = O
o =
<9 0
T <

Figure 22.2. Number of defects found with and without peer reviews from two
example projects.

32
Better Embedded System Software. Koopman 2010

The waterfall model

Advantages Disadvantages

e Separation of tasks * In practice, later stages improve
* Aids personnel management understanding of earlier stages,

« Process visibility necessitating revision

« Quality control at each step * Not flexible enough to react to

o changing conditions
* Cost monitoring at each step

lteration is required

* Feasibility study needs preliminary requirements and tentative design
* Implementation often reveals gaps in requirements
e User interfaces hard to analyze without actually using them

* Requirements, technology may change during development
* E.g. updated market analysis

Modified waterfall model

Feasibility study

Waterfall model with

feedback
A N\
Requirements
A N
System design
A N
Program design
A N\
Implementation (coding)
A N
Program testing
N
Acceptance & release
I N
y y y y Operation & maintenance

35

Modified waterfall model

* A fine choice when are well-understood and
is fixed
e Automating manual data processing systems (e.g. utility billing)

* New version of system whose functionality derives from earlier product (e.g.
embedded controller)

* Self-contained components/services with a pre-defined interface

* Widely recommended for safety-critical or highly regulated systems
* Requirements must be thoroughly analyzed and documented

e Suitable for CS 5150 projects

* But plan for iteration around user interfaces

Iterative refinement

* Requirements are hard to elicit without an operational system
e Especially for user interfaces

* Developers can learn a lot about the domain and proposed design
through prototyping

* Process:
e Create a prototype early on
* Review prototype with clients; test prototype with users
 Clarify requirements, improve design (revise documentation)
* Refine prototype iteratively

* Prototype is not a releasable product!
* Cannot evaluate non-functional requirements without final system design

Iterative refinement

* Each prototype should be

Desi .
T formally evaluated, producing an
evaluation report
Requirements x implementation * Medium-weight process
 Documentation produced after

each review, revised during

. y iterations
/ Review

Release

38

Incremental delivery

* Deliver fully-tested increments with subset of functionality

e Start with a base system that matches final architecture, but with dummy
components/missing functionality

* Develop new components along with their test cases in isolation; when
functional, add to base system

e System is periodically built and tested to catch regressions

* Challenges:

* Requires base system with good design, automated testing infrastructure
(high startup overhead)

* Code structure can degrade over time (refactoring is not a new component)
* Increments have incomplete functionality (difficult to evaluate)

Development step decisions

* Overall methodology affects schedule, task assignments, deliverables
* Management-focused

e Still leaves flexibility in fine-grained development policies

Agile methods and eXtreme Programming

* User stories * Pair programming
* Improves communication Shifts left

* Incremental planning * Collective ownership

* Small releases e Continuous integration
* Improves visibility Shifts left

e Simple design * On-site customer

e Test-first development * Improves communication
* Shifts left

* Periodic refactoring

Scrum implementation of Agile

* Provides management structure that accommodates XP/Agile

* Work scheduled as "time boxes" (sprints)
e 2-4 weeks

* Tasks selected from backlog
* Incomplete work is not automatically carried over

* Sprint product is released, production-quality code + docs
* Sprint planning defines an MVP

* Daily team meetings

Agile/scrum workflow

—

to be done

(Review work

Select
items

Plan
sprint

Product
backlog

Review
sprint

Sprint
backlog

Potentially
shippable
software

44
Software Engineering, Tenth Edition. Sommerville 2014

Agile/scrum

Benefits Challenges

* Good visibility and * Tricky to scale to large projects,
communication bureaucratic organizations

e Accommodates change, fuzzy * Works best with highly-skilled,
requirements autonomous developers

* Very popular today for small, * Hard to validate requirements
dynamic projects for completeness

* Lack of formal docs impedes
maintenance, handoff

Integration and configuration

* When system design is standardized, can better take advantage of
code reuse

* Providers collect lots of configurable components into commercial-
off-the-shelf (COTS) products

* E.g. Enterprise Resource Planning (ERP) platforms

* Developers integrate, configure components based on client
requirements

 Effectively skip system design and program development steps

Pros
e Reduced cost and time

Cons
e Reduced function

46

Poll

What methodology was used for the FAA AAS?
Was this an appropriate choice?

PollEv.com/ cs5150sp25

Mixed processes

Many projects mix elements of multiple methodologies

* If requirements are well-understood, might use Waterfall to define
requirements & system design, then implement using Incremental
Delivery performed in Scrum-like sprints

* If requirements are vague, might use Iterative Refinement to clarify
requirements, followed by Modified Waterfall to build final version
(prototype is discarded)

* Might Integrate & Configure a COTS platform for prototype

* Might develop user interface with iterative refinement, but adopt
another process for data store

Phased development

e Decide at the outset to divide a project into multiple phases

* First phase product is quickly brought into (limited) production
* Subsequent phases based on experience from first phase

* Advantages
* Early benefit from initial investment
 Clarifies requirements for later phases
* Costs can be spread out (or subsequent phases can be cancelled)

Summary

 Different development processes are appropriate for different projects
* Processes can evolve during a project
* Processes include common process steps
* Processes must accommodate revision of prior steps
* Beware buzzwords

* Purpose of process is to minimize risk. Risk-reduction practices include:
* Prototyping key components
* Frequent releases, or decomposition into phases
e Early and iterative testing with users/customers
* Promoting visibility

Summary

 Heavyweight: Discourages change; more effort upfront to be
confident in design choices
* Beneficial if system has many inter-related components
* Example use: Lockheed Martin

* Lightweight: Accommodates requirements uncertainty
* |teration can clarify requirements
* Agility can respond to novel markets
* Example use: Amazon

Assignment

» Read Software Engineering at Google, Chapter 2:
How to Work Well on Teams

* Keep forming teams!

	Slide 1: Lecture 2: Projects & Processes
	Slide 2: Admin Stuff
	Slide 3: Project
	Slide 4: Variety
	Slide 5: Variety (cont.)
	Slide 6: … requires versatility
	Slide 7: Project stakeholders
	Slide 8: Stakeholders: Developers
	Slide 9: Stakeholders: Client
	Slide 10: Example: business-to-business
	Slide 11: Poll
	Slide 12: Stakeholders: Customer, User, Society
	Slide 13: Activity: Stakeholders
	Slide 14: Risk
	Slide 15: Consequences
	Slide 16: Minimizing risk – communication
	Slide 17: Minimizing risk – visibility
	Slide 18: Improving visibility – short dev cycles
	Slide 19: Minimizing risk – management
	Slide 20: Development processes
	Slide 22: Process steps
	Slide 23: Overview of steps
	Slide 24: Overview of steps (cont.)
	Slide 25: Overview of steps (cont.)
	Slide 26: Activity: FAA AAS Discuss
	Slide 27: Software Methodologies
	Slide 28: Heavyweight vs lightweight methodologies
	Slide 29: Waterfall model: Origins
	Slide 30: The waterfall model
	Slide 31: Cost of defects
	Slide 32: Shift left
	Slide 33: The waterfall model
	Slide 34: Iteration is required
	Slide 35: Modified waterfall model
	Slide 36: Modified waterfall model
	Slide 37: Iterative refinement
	Slide 38: Iterative refinement
	Slide 39: Incremental delivery
	Slide 40: Development step decisions
	Slide 41: Agile methods and eXtreme Programming
	Slide 43: Scrum implementation of Agile
	Slide 44: Agile/scrum workflow
	Slide 45: Agile/scrum
	Slide 46: Integration and configuration
	Slide 47: Poll
	Slide 48: Mixed processes
	Slide 49: Phased development
	Slide 50: Summary
	Slide 51: Summary
	Slide 52: Assignment

