
Lecture 2:
Projects & Processes

CS 5150, Spring 2025

1

Admin Stuff

• Project Team Matching Survey

• Team-forming threads

• See internal project descriptions

• Canvas tour

• Firehose upfront
• Need to cover all the basics so you

can write your project plan

• Concepts are high-level, abstract;
try to correlate them with a
concrete example (like FAA AAS)

2

Project

• How do I pick a project?
• Consider this as an opportunity to learn something new (e.g., new language)

• Do not go into a project where you are not familiar with anything!

• How do I pick a team/teammates?
• Consider working style preferences, program,

• Identify complementary skill-set (front-end/backend, source/target language)

3

Variety

Software is required to serve many
different purposes …

• Control systems (vehicles, industrial
processes)

• Embedded (appliances, medical
devices, remote monitoring)

• Operating systems & drivers

• Developer tools
(IDEs, frameworks, compilers)

• Data processing (billing, benefits)

• Information systems (databases,

digital libraries, search)

• Commerce (shopping, advertising)

• Science (weather forecasting, data
analysis)

• Engineering (CAD/CAM, FEA, EDA)

• Multimedia & entertainment (video
conferencing, games, VR/AR)

• Creativity (3D modeling,
photography)

• Productivity (spreadsheets, desktop
publishing)

4

Variety (cont.)

… in many different settings …

• Embedded firmware

• RTOS

• PC

• Smartphone

• Web browser

• Supercomputer

• Virtualized servers

• Cloud

… for many different people.

• Yourself

• Consumers

• Professionals

• B2B

• Employer/colleagues

• Government agencies

• Prime contractors

• General public

5

… requires versatility

Consequently, there is no “best” way to create software in all cases

• No best operating system

• No best programming language

• No best framework or architecture

• No best development environment/tools

• No best methodology/process

A software engineer must know a wide variety of methods & tools and
select appropriate ones for the project at hand

6

Project stakeholders

• First step in any project:
identify the stakeholders
• Who sets requirements?

• Who decides priorities?

• Who will use your software?

• Who is affected by your software?

• Who writes the check?

• Who takes the fall?

• Stakeholder interests are not always aligned

7

Stakeholders: Developers

• You are a stakeholder
• You have to work with the code

• You have to support the system

• Your reputation is on the line

• You are also an (expensive)
resource
• Biggest cost of software is salaries

of development team

• You have responsibilities
• Competence

• Confidentiality

• Legal compliance (e.g., FERPA)

• Acceptable use & misuse

8

Stakeholders: Client

• Provides resources in exchange
for having the software
developed

• Bears risk in event of project
failure

• Client sets requirements
• Though developers must elicit

them

• Client sets priorities

• Client satisfaction is primary
measure of project success

9

Example: business-to-business

Nikon contracts with Nik Software
to co-develop “Nikon Capture NX”,
a digital photo editor sold to users
of Nikon cameras

• Developer: Nik Software

• Client: Nikon (specifically, a
product manager in their
imaging business division)

10

Poll

Who is the client for general-purpose software products?

PollEv.com/cs5150sp25

11

Stakeholders: Customer, User, Society

• Customer: buys the software or selects it for use by an organization

• User: Actually uses (interfaces with) the software

• Society: may be affected by the software
• Often not represented when stakeholders are consulted

• Advisable to appoint an advocate for their interests
• Automated processes tend to become invisible

• Risks to society should be identified and acknowledged

12

Activity: Stakeholders

1. Turn to your neighbor

2. Identify the stakeholders (developer, client, customer, user) for:
1. canvas.cornell.edu

2. FAA’s Advanced Automation System

3. Select a reporter to share results

(3 minutes)

13

Risk

• All projects require tradeoffs between function, cost, and time

• Many projects encounter difficulties:
• Does not work as expected (function)

• Over budget (cost)

• Behind schedule (time)

• Who should set priorities when deciding tradeoffs?
• The client bears the cost of the project

• The client bears the risks of project failure

• The client should be given the information necessary to make an informed
decision based on their priorities

14

Consequences

• Failed projects have serious
consequences
• Can bankrupt companies

• Managers can lose their jobs

• Users and society may be harmed

• Example: Apple Maps 2012;
Maps chief fired

https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower

15

https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower

Minimizing risk – communication

• As much as half of delivered
software is never used
• Developers build the “wrong
software” – doesn’t meet client’s
needs

• Developer must work to
understand client, customer, and
user expectations

• Developer may add technical
insights, but client satisfaction is
the primary measure of success

Minimize risk with communication

• Feasibility study

• Requirements and design
(separated)

• Milestones & releases

• User & acceptance testing

• Handover

16

Minimizing risk – visibility

• Those responsible for the project
(client, managers) must know
what is happening

• But most developers …
• Have trouble evaluating progress

• Tend to be overly optimistic

• Consider logging/reporting to be
unnecessary overhead

• Large projects are worse
• Dilution at every level of hierarchy

• In CS 5150, you will provide
visibility via regular progress
reports

• Working software provides good
visibility
• Promoted by Agile methods

• But be upfront about limitations

17

Improving visibility – short dev cycles

• Risk accumulates with time since last check-in

• Deliver working software frequently (weeks rather than months, or
even continuously)
• Clients, customers, & users can evaluate work

• Opportunity to adapt to new circumstances

• Promoted by Agile methods

18

Minimizing risk – management

• Project management
• Track progress against schedule
• Prioritize tasks

• Personnel management
• Allocate the right number of

developers with the right skills at
the right time

• Ensure that developers have a
productive work environment

• Compliance advising
• Understand legal, regulatory,

economic environment

• Development processes
• Enforce best practices to minimize

risk without excessive overhead
• Improve visibility
• Facilitate team productivity
• Ensure quality

19

Development processes

• Example process decisions:
• How requirements are tracked
• How tasks, issues are tracked &

prioritized
• How software versions are

controlled
• Code review mandates
• Test coverage mandates
• Amount, timing of documentation
• Frequency, style of meetings
• What metrics are collected

• Tradeoff between risk reduction
and overhead
• Effectiveness, cost depend on tool

support, developer skill, culture
• Initial risk depends on project size
• Risk tolerance depends on

application

• Must adapt process to each
project

• Aim to improve processes
throughout project

20

Process steps

• Project specifics are different,
but they need to address similar
issues

• Process decisions should be
adopted to address common
process steps

• Note: testing & documentation
occur in many steps

• Feasibility & planning

• Requirements

• System & interface design

• Program development
• Includes program design

• Acceptance and release

• Operations and maintenance

R
ep

eated

22

Overview of steps

• Feasibility
• Define scope

• Catalog benefits, risks

• Evaluate technical feasibility

• Select development process

• Estimate cost, schedule, resource
availability

• Decide: go/no-go

• Requirements
• Define function of system from

client's viewpoint

• Establish constraints ("non-
functional requirements")

• Elicit from consultation with client,
customer, users
• Self-contained study or incremental

• Biggest cause of failed projects

23

Overview of steps (cont.)

• System & interface design
• Select an architecture that

supports requirements

• User interfaces must be iteratively
evaluated with users

• Architectural integrity is key to
maintainable systems

• Program development
• May start with documenting

program design (class & function
definitions)

• Coding!
• What you already know how to do

• May incorporate testing

24

Overview of steps (cont.)

• Acceptance & release
• Product is verified against

requirements by the client
• Ideally with selected customers &

users

• Complete system (with
documentation) delivered to client
• Deployed in production, marketed to

customers

• Operation & maintenance
• System is kept running smoothly

• Bugs discovered and fixed in
production

• New features proposed and
integrated (requirements change)

• May eventually be phased out

25

Activity: FAA AAS Discuss

Which steps were handled poorly
for the FAA’s Advanced
Automation System?

(3 minutes)

Feasibility & planning

Requirements

System & interface design

Program development

Acceptance and release

Operations and maintenance

26

Software Methodologies

• Can organize sets of process
decisions by how they address
the common process steps
• Formal vs. informal

• Do steps have pre-defined outputs?

• Duration and ordering

• Heavyweight
• Fully complete (and document)

each step before moving on

• Avoid revisions to work done in
previous steps

• Lightweight
• Schedule work in “time boxes”

that include multiple process steps

• Avoid formal documentation to
more easily accommodate
changes

27

Heavyweight vs lightweight methodologies

Heavyweight

• Processes and tools

• Specifications

• Following a plan

• Client negotiation

Lightweight

• Individuals and interactions

• Working software

• Responding to change

• Client collaboration

Based on the Manifesto for Agile Software Development
http://agilemanifesto.org/28

http://agilemanifesto.org/

Waterfall model: Origins

• Based on traditional engineering
project management
• Long lead time for supplies; must

commit to large orders

• Extremely expensive to change
hardware once built, BoM once
ordered

• Extremely expensive to pause
manufacturing

• At this time in software history,
• Requirements well understood

(automating manual processes)

• Little variety in system design

• Coding was very tedious (no
modern languages/tools) –
benefits from detailed program
design

• Good match for a heavyweight
process

29

The waterfall model

 equirements

System design

 rogram tes ng

 pera on maintenance

 rogram design

 mplementa on coding

Acceptance release

Feasibility study

30

Cost of defects

Code Complete, 2nd Edition. McConnell 2004
31

Shift left

• QA is difficult without a working
system
• But working systems aren’t

available until the end of a
waterfall process

• Process decisions can effectively
shift QA left without requiring
formal deliverables after each
step

Better Embedded System Software. Koopman 2010
32

The waterfall model

Advantages

• Separation of tasks
• Aids personnel management

• Process visibility

• Quality control at each step

• Cost monitoring at each step

Disadvantages

• In practice, later stages improve
understanding of earlier stages,
necessitating revision

• Not flexible enough to react to
changing conditions

33

Iteration is required

• Feasibility study needs preliminary requirements and tentative design

• Implementation often reveals gaps in requirements

• User interfaces hard to analyze without actually using them

• Requirements, technology may change during development
• E.g. updated market analysis

34

Modified waterfall model

 equirements

System design

 rogram tes ng

 pera on maintenance

 rogram design

 mplementa on coding

Acceptance release

Feasibility study
Waterfall model with
feedback

35

Modified waterfall model

• A fine choice when requirements are well-understood and system
design is fixed
• Automating manual data processing systems (e.g. utility billing)

• New version of system whose functionality derives from earlier product (e.g.
embedded controller)

• Self-contained components/services with a pre-defined interface

• Widely recommended for safety-critical or highly regulated systems
• Requirements must be thoroughly analyzed and documented

• Suitable for CS 5150 projects
• But plan for iteration around user interfaces

36

Iterative refinement

• Requirements are hard to elicit without an operational system
• Especially for user interfaces

• Developers can learn a lot about the domain and proposed design
through prototyping

• Process:
• Create a prototype early on
• Review prototype with clients; test prototype with users
• Clarify requirements, improve design (revise documentation)
• Refine prototype iteratively

• Prototype is not a releasable product!
• Cannot evaluate non-functional requirements without final system design

37

Iterative refinement

 equirements

Design

 mplementa on

 eview

 elease

• Each prototype should be
formally evaluated, producing an
evaluation report

• Medium-weight process
• Documentation produced after

each review, revised during
iterations

38

Incremental delivery

• Deliver fully-tested increments with subset of functionality
• Start with a base system that matches final architecture, but with dummy

components/missing functionality

• Develop new components along with their test cases in isolation; when
functional, add to base system

• System is periodically built and tested to catch regressions

• Challenges:
• Requires base system with good design, automated testing infrastructure

(high startup overhead)

• Code structure can degrade over time (refactoring is not a new component)

• Increments have incomplete functionality (difficult to evaluate)

39

Development step decisions

• Overall methodology affects schedule, task assignments, deliverables
• Management-focused

• Still leaves flexibility in fine-grained development policies

40

Agile methods and eXtreme Programming

• User stories
• Improves communication

• Incremental planning

• Small releases
• Improves visibility

• Simple design

• Test-first development
• Shifts left

• Periodic refactoring

• Pair programming
• Shifts left

• Collective ownership

• Continuous integration
• Shifts left

• On-site customer
• Improves communication

41

Scrum implementation of Agile

• Provides management structure that accommodates XP/Agile

• Work scheduled as "time boxes" (sprints)
• 2-4 weeks

• Tasks selected from backlog
• Incomplete work is not automatically carried over

• Sprint product is released, production-quality code + docs
• Sprint planning defines an MVP

• Daily team meetings

43

Agile/scrum workflow

Software Engineering, Tenth Edition. Sommerville 2014
44

Agile/scrum

Benefits

• Good visibility and
communication

• Accommodates change, fuzzy
requirements

• Very popular today for small,
dynamic projects

Challenges

• Tricky to scale to large projects,
bureaucratic organizations

• Works best with highly-skilled,
autonomous developers

• Hard to validate requirements
for completeness

• Lack of formal docs impedes
maintenance, handoff

45

Integration and configuration

• When system design is standardized, can better take advantage of
code reuse

• Providers collect lots of configurable components into commercial-
off-the-shelf (COTS) products
• E.g. Enterprise Resource Planning (ERP) platforms

• Developers integrate, configure components based on client
requirements
• Effectively skip system design and program development steps

Pros
• Reduced cost and time

Cons
• Reduced function

46

Poll

What methodology was used for the FAA AAS?

Was this an appropriate choice?

PollEv.com/ cs5150sp25

47

Mixed processes

Many projects mix elements of multiple methodologies

• If requirements are well-understood, might use Waterfall to define
requirements & system design, then implement using Incremental
Delivery performed in Scrum-like sprints

• If requirements are vague, might use Iterative Refinement to clarify
requirements, followed by Modified Waterfall to build final version
(prototype is discarded)
• Might Integrate & Configure a COTS platform for prototype

• Might develop user interface with iterative refinement, but adopt
another process for data store

48

Phased development

• Decide at the outset to divide a project into multiple phases
• First phase product is quickly brought into (limited) production

• Subsequent phases based on experience from first phase

• Advantages
• Early benefit from initial investment

• Clarifies requirements for later phases

• Costs can be spread out (or subsequent phases can be cancelled)

49

Summary

• Different development processes are appropriate for different projects
• Processes can evolve during a project

• Processes include common process steps

• Processes must accommodate revision of prior steps

• Beware buzzwords

• Purpose of process is to minimize risk. Risk-reduction practices include:
• Prototyping key components

• Frequent releases, or decomposition into phases

• Early and iterative testing with users/customers

• Promoting visibility

50

Summary

• Heavyweight: Discourages change; more effort upfront to be
confident in design choices
• Beneficial if system has many inter-related components

• Example use: Lockheed Martin

• Lightweight: Accommodates requirements uncertainty
• Iteration can clarify requirements

• Agility can respond to novel markets

• Example use: Amazon

51

Assignment

• Read Software Engineering at Google, Chapter 2:
How to Work Well on Teams

• Keep forming teams!

52

	Slide 1: Lecture 2: Projects & Processes
	Slide 2: Admin Stuff
	Slide 3: Project
	Slide 4: Variety
	Slide 5: Variety (cont.)
	Slide 6: … requires versatility
	Slide 7: Project stakeholders
	Slide 8: Stakeholders: Developers
	Slide 9: Stakeholders: Client
	Slide 10: Example: business-to-business
	Slide 11: Poll
	Slide 12: Stakeholders: Customer, User, Society
	Slide 13: Activity: Stakeholders
	Slide 14: Risk
	Slide 15: Consequences
	Slide 16: Minimizing risk – communication
	Slide 17: Minimizing risk – visibility
	Slide 18: Improving visibility – short dev cycles
	Slide 19: Minimizing risk – management
	Slide 20: Development processes
	Slide 22: Process steps
	Slide 23: Overview of steps
	Slide 24: Overview of steps (cont.)
	Slide 25: Overview of steps (cont.)
	Slide 26: Activity: FAA AAS Discuss
	Slide 27: Software Methodologies
	Slide 28: Heavyweight vs lightweight methodologies
	Slide 29: Waterfall model: Origins
	Slide 30: The waterfall model
	Slide 31: Cost of defects
	Slide 32: Shift left
	Slide 33: The waterfall model
	Slide 34: Iteration is required
	Slide 35: Modified waterfall model
	Slide 36: Modified waterfall model
	Slide 37: Iterative refinement
	Slide 38: Iterative refinement
	Slide 39: Incremental delivery
	Slide 40: Development step decisions
	Slide 41: Agile methods and eXtreme Programming
	Slide 43: Scrum implementation of Agile
	Slide 44: Agile/scrum workflow
	Slide 45: Agile/scrum
	Slide 46: Integration and configuration
	Slide 47: Poll
	Slide 48: Mixed processes
	Slide 49: Phased development
	Slide 50: Summary
	Slide 51: Summary
	Slide 52: Assignment

