
Lecture 2:
Projects & Processes

CS 5150, Spring 2025
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Admin Stuff

• Project Team Matching Survey

• Team-forming threads

• See internal project descriptions

• Canvas tour

• Firehose upfront
• Need to cover all the basics so you 

can write your project plan

• Concepts are high-level, abstract; 
try to correlate them with a 
concrete example (like FAA AAS)
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Project

• How do I pick a project?
• Consider this as an opportunity to learn something new (e.g., new language)

• Do not go into a project where you are not familiar with anything!

• How do I pick a team/teammates?
• Consider working style preferences, program, 

• Identify complementary skill-set (front-end/backend, source/target language)
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Variety

Software is required to serve many 
different purposes …

• Control systems (vehicles, industrial 
processes)

• Embedded (appliances, medical 
devices, remote monitoring)

• Operating systems & drivers

• Developer tools 
(IDEs, frameworks, compilers)

• Data processing (billing, benefits)

• Information systems (databases, 

digital libraries, search)

• Commerce (shopping, advertising)

• Science (weather forecasting, data 
analysis)

• Engineering (CAD/CAM, FEA, EDA)

• Multimedia & entertainment (video 
conferencing, games, VR/AR)

• Creativity (3D modeling, 
photography)

• Productivity (spreadsheets, desktop 
publishing)
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Variety (cont.)

… in many different settings …

• Embedded firmware

• RTOS

• PC

• Smartphone

• Web browser

• Supercomputer

• Virtualized servers

• Cloud

… for many different people.

• Yourself

• Consumers

• Professionals

• B2B

• Employer/colleagues

• Government agencies

• Prime contractors

• General public
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… requires versatility

Consequently, there is no “best” way to create software in all cases

• No best operating system

• No best programming language

• No best framework or architecture

• No best development environment/tools

• No best methodology/process

A software engineer must know a wide variety of methods & tools and 
select appropriate ones for the project at hand
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Project stakeholders

• First step in any project:
identify the stakeholders
• Who sets requirements?

• Who decides priorities?

• Who will use your software?

• Who is affected by your software?

• Who writes the check?

• Who takes the fall?

• Stakeholder interests are not always aligned
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Stakeholders: Developers

• You are a stakeholder
• You have to work with the code

• You have to support the system

• Your reputation is on the line

• You are also an (expensive) 
resource
• Biggest cost of software is salaries 

of development team

• You have responsibilities
• Competence

• Confidentiality

• Legal compliance (e.g., FERPA)

• Acceptable use & misuse
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Stakeholders: Client

• Provides resources in exchange 
for having the software 
developed

• Bears risk in event of project 
failure

• Client sets requirements
• Though developers must elicit 

them

• Client sets priorities

• Client satisfaction is primary 
measure of project success
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Example: business-to-business

Nikon contracts with Nik Software 
to co-develop “Nikon Capture NX”, 
a digital photo editor sold to users 
of Nikon cameras

• Developer: Nik Software

• Client: Nikon (specifically, a 
product manager in their 
imaging business division)
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Poll

Who is the client for general-purpose software products?

PollEv.com/cs5150sp25
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Stakeholders: Customer, User, Society

• Customer: buys the software or selects it for use by an organization

• User: Actually uses (interfaces with) the software

• Society: may be affected by the software
• Often not represented when stakeholders are consulted

• Advisable to appoint an advocate for their interests
• Automated processes tend to become invisible

• Risks to society should be identified and acknowledged
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Activity: Stakeholders

1. Turn to your neighbor

2. Identify the stakeholders (developer, client, customer, user) for:
1. canvas.cornell.edu

2. FAA’s Advanced Automation System

3. Select a reporter to share results

(3 minutes)
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Risk

• All projects require tradeoffs between function, cost, and time

• Many projects encounter difficulties:
• Does not work as expected (function)

• Over budget (cost)

• Behind schedule (time)

• Who should set priorities when deciding tradeoffs?
• The client bears the cost of the project

• The client bears the risks of project failure

• The client should be given the information necessary to make an informed 
decision based on their priorities
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Consequences

• Failed projects have serious 
consequences
• Can bankrupt companies

• Managers can lose their jobs

• Users and society may be harmed

• Example: Apple Maps 2012; 
Maps chief fired

https://www.xda-developers.com/apple-maps-launched-11-years-ago
https://www.theguardian.com/technology/2012/sep/20/apple-maps-ios6-station-tower  
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Minimizing risk – communication

• As much as half of delivered 
software is never used
• Developers build the “wrong 
software” – doesn’t meet client’s 
needs

• Developer must work to 
understand client, customer, and 
user expectations

• Developer may add technical 
insights, but client satisfaction is 
the primary measure of success

Minimize risk with communication

• Feasibility study

• Requirements and design 
(separated)

• Milestones & releases

• User & acceptance testing

• Handover
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Minimizing risk – visibility

• Those responsible for the project 
(client, managers) must know 
what is happening

• But most developers …
• Have trouble evaluating progress

• Tend to be overly optimistic

• Consider logging/reporting to be 
unnecessary overhead

• Large projects are worse
• Dilution at every level of hierarchy

• In CS 5150, you will provide 
visibility via regular progress 
reports

• Working software provides good 
visibility
• Promoted by Agile methods

• But be upfront about limitations
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Improving visibility – short dev cycles

• Risk accumulates with time since last check-in

• Deliver working software frequently (weeks rather than months, or 
even continuously)
• Clients, customers, & users can evaluate work

• Opportunity to adapt to new circumstances

• Promoted by Agile methods
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Minimizing risk – management

• Project management
• Track progress against schedule
• Prioritize tasks

• Personnel management
• Allocate the right number of 

developers with the right skills at 
the right time

• Ensure that developers have a 
productive work environment

• Compliance advising
• Understand legal, regulatory, 

economic environment

• Development processes
• Enforce best practices to minimize 

risk without excessive overhead
• Improve visibility
• Facilitate team productivity
• Ensure quality
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Development processes

• Example process decisions:
• How requirements are tracked
• How tasks, issues are tracked & 

prioritized
• How software versions are 

controlled
• Code review mandates
• Test coverage mandates
• Amount, timing of documentation
• Frequency, style of meetings
• What metrics are collected

• Tradeoff between risk reduction 
and overhead
• Effectiveness, cost depend on tool 

support, developer skill, culture
• Initial risk depends on project size
• Risk tolerance depends on 

application

• Must adapt process to each 
project

• Aim to improve processes 
throughout project
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Process steps

• Project specifics are different, 
but they need to address similar 
issues

• Process decisions should be 
adopted to address common 
process steps

• Note: testing & documentation 
occur in many steps

• Feasibility & planning

• Requirements

• System & interface design

• Program development
• Includes program design

• Acceptance and release

• Operations and maintenance

R
ep

eated
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Overview of steps

• Feasibility
• Define scope

• Catalog benefits, risks

• Evaluate technical feasibility

• Select development process

• Estimate cost, schedule, resource 
availability

• Decide: go/no-go

• Requirements
• Define function of system from 

client's viewpoint

• Establish constraints ("non-
functional requirements")

• Elicit from consultation with client, 
customer, users
• Self-contained study or incremental

• Biggest cause of failed projects
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Overview of steps (cont.)

• System & interface design
• Select an architecture that 

supports requirements

• User interfaces must be iteratively 
evaluated with users

• Architectural integrity is key to 
maintainable systems

• Program development
• May start with documenting 

program design (class & function 
definitions)

• Coding!
• What you already know how to do

• May incorporate testing
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Overview of steps (cont.)

• Acceptance & release
• Product is verified against 

requirements by the client
• Ideally with selected customers & 

users

• Complete system (with 
documentation) delivered to client
• Deployed in production, marketed to 

customers

• Operation & maintenance
• System is kept running smoothly

• Bugs discovered and fixed in 
production

• New features proposed and 
integrated (requirements change)

• May eventually be phased out
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Activity: FAA AAS Discuss

Which steps were handled poorly 
for the FAA’s Advanced 
Automation System?

(3 minutes)

Feasibility & planning

Requirements

System & interface design

Program development

Acceptance and release

Operations and maintenance
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Software Methodologies

• Can organize sets of process 
decisions by how they address 
the common process steps
• Formal vs. informal

• Do steps have pre-defined outputs?

• Duration and ordering

• Heavyweight
• Fully complete (and document) 

each step before moving on

• Avoid revisions to work done in 
previous steps

• Lightweight
• Schedule work in “time boxes” 

that include multiple process steps

• Avoid formal documentation to 
more easily accommodate 
changes
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Heavyweight vs lightweight methodologies

Heavyweight

• Processes and tools

• Specifications

• Following a plan

• Client negotiation

Lightweight

• Individuals and interactions

• Working software

• Responding to change

• Client collaboration

Based on the Manifesto for Agile Software Development
http://agilemanifesto.org/28
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Waterfall model: Origins

• Based on traditional engineering 
project management
• Long lead time for supplies; must 

commit to large orders

• Extremely expensive to change 
hardware once built, BoM once 
ordered

• Extremely expensive to pause 
manufacturing

• At this time in software history,
• Requirements well understood 

(automating manual processes)

• Little variety in system design

• Coding was very tedious (no 
modern languages/tools) – 
benefits from detailed program 
design

• Good match for a heavyweight 
process
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The waterfall model

 equirements

System design

 rogram tes ng

 pera on   maintenance

 rogram design

 mplementa on  coding 

Acceptance   release

Feasibility study
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Cost of defects

Code Complete, 2nd Edition. McConnell 2004
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Shift left

• QA is difficult without a working 
system
• But working systems aren’t 

available until the end of a 
waterfall process

• Process decisions can effectively 
shift QA left without requiring 
formal deliverables after each 
step

Better Embedded System Software. Koopman 2010
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The waterfall model

Advantages

• Separation of tasks
• Aids personnel management

• Process visibility

• Quality control at each step

• Cost monitoring at each step

Disadvantages

• In practice, later stages improve 
understanding of earlier stages, 
necessitating revision

• Not flexible enough to react to 
changing conditions
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Iteration is required

• Feasibility study needs preliminary requirements and tentative design

• Implementation often reveals gaps in requirements

• User interfaces hard to analyze without actually using them

• Requirements, technology may change during development
• E.g. updated market analysis
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Modified waterfall model

 equirements

System design

 rogram tes ng

 pera on   maintenance

 rogram design

 mplementa on  coding 

Acceptance   release

Feasibility study
Waterfall model with 
feedback
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Modified waterfall model

• A fine choice when requirements are well-understood and system 
design is fixed
• Automating manual data processing systems (e.g. utility billing)

• New version of system whose functionality derives from earlier product (e.g. 
embedded controller)

• Self-contained components/services with a pre-defined interface

• Widely recommended for safety-critical or highly regulated systems
• Requirements must be thoroughly analyzed and documented

• Suitable for CS 5150 projects
• But plan for iteration around user interfaces
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Iterative refinement

• Requirements are hard to elicit without an operational system
• Especially for user interfaces

• Developers can learn a lot about the domain and proposed design 
through prototyping

• Process:
• Create a prototype early on
• Review prototype with clients; test prototype with users
• Clarify requirements, improve design (revise documentation)
• Refine prototype iteratively

• Prototype is not a releasable product!
• Cannot evaluate non-functional requirements without final system design

37



Iterative refinement

 equirements

Design

 mplementa on

 eview

 elease

• Each prototype should be 
formally evaluated, producing an 
evaluation report

• Medium-weight process
• Documentation produced after 

each review, revised during 
iterations
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Incremental delivery

• Deliver fully-tested increments with subset of functionality
• Start with a base system that matches final architecture, but with dummy 

components/missing functionality

• Develop new components along with their test cases in isolation; when 
functional, add to base system

• System is periodically built and tested to catch regressions

• Challenges:
• Requires base system with good design, automated testing infrastructure 

(high startup overhead)

• Code structure can degrade over time (refactoring is not a new component)

• Increments have incomplete functionality (difficult to evaluate)
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Development step decisions

• Overall methodology affects schedule, task assignments, deliverables
• Management-focused

• Still leaves flexibility in fine-grained development policies
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Agile methods and eXtreme Programming

• User stories
• Improves communication

• Incremental planning

• Small releases
• Improves visibility

• Simple design

• Test-first development
• Shifts left

• Periodic refactoring

• Pair programming
• Shifts left

• Collective ownership

• Continuous integration
• Shifts left

• On-site customer
• Improves communication
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Scrum implementation of Agile

• Provides management structure that accommodates XP/Agile

• Work scheduled as "time boxes" (sprints)
• 2-4 weeks

• Tasks selected from backlog
• Incomplete work is not automatically carried over

• Sprint product is released, production-quality code + docs
• Sprint planning defines an MVP

• Daily team meetings
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Agile/scrum workflow

Software Engineering, Tenth Edition. Sommerville 2014
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Agile/scrum

Benefits

• Good visibility and 
communication

• Accommodates change, fuzzy 
requirements

• Very popular today for small, 
dynamic projects

Challenges

• Tricky to scale to large projects, 
bureaucratic organizations

• Works best with highly-skilled, 
autonomous developers

• Hard to validate requirements 
for completeness

• Lack of formal docs impedes 
maintenance, handoff
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Integration and configuration

• When system design is standardized, can better take advantage of 
code reuse

• Providers collect lots of configurable components into commercial-
off-the-shelf (COTS) products
• E.g. Enterprise Resource Planning (ERP) platforms

• Developers integrate, configure components based on client 
requirements
• Effectively skip system design and program development steps

Pros
• Reduced cost and time

Cons
• Reduced function
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Poll

What methodology was used for the FAA AAS?

Was this an appropriate choice?

PollEv.com/ cs5150sp25
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Mixed processes

Many projects mix elements of multiple methodologies

• If requirements are well-understood, might use Waterfall to define 
requirements & system design, then implement using Incremental 
Delivery performed in Scrum-like sprints

• If requirements are vague, might use Iterative Refinement to clarify 
requirements, followed by Modified Waterfall to build final version 
(prototype is discarded)
• Might Integrate & Configure a COTS platform for prototype

• Might develop user interface with iterative refinement, but adopt 
another process for data store
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Phased development

• Decide at the outset to divide a project into multiple phases
• First phase product is quickly brought into (limited) production

• Subsequent phases based on experience from first phase

• Advantages
• Early benefit from initial investment

• Clarifies requirements for later phases

• Costs can be spread out (or subsequent phases can be cancelled)
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Summary

• Different development processes are appropriate for different projects
• Processes can evolve during a project

• Processes include common process steps

• Processes must accommodate revision of prior steps

• Beware buzzwords

• Purpose of process is to minimize risk.  Risk-reduction practices include:
• Prototyping key components

• Frequent releases, or decomposition into phases

• Early and iterative testing with users/customers

• Promoting visibility
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Summary

• Heavyweight: Discourages change; more effort upfront to be 
confident in design choices
• Beneficial if system has many inter-related components

• Example use: Lockheed Martin

• Lightweight: Accommodates requirements uncertainty
• Iteration can clarify requirements

• Agility can respond to novel markets

• Example use: Amazon
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Assignment

• Read Software Engineering at Google, Chapter 2:
How to Work Well on Teams

• Keep forming teams!
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