
CS 5150: Software Engineering
Prof. Saikat Dutta

Spring 2025

www.cs.cornell.edu/courses/cs5150

1

http://www.cs.cornell.edu/courses/cs5150/

The Pitch

• You already know how to write programs

• But can you create a software system?
• Example: Canvas

• If I offered to pay you to automate some work, could you answer
these basic questions?
• How long will it take?

• How will you know when you’re done?

• How often will it crash?

• Is it even legal?

2

About the course

Objective: Prepare you to contribute to reliable software systems

• Semester-long team project

• 4 credits = 10+ hours of work per week (outside of lecture)
• Regular team meetings instead of discussion section

• 5000-level: assume you can teach yourself new technical skills

• Focus on expanding capabilities of large, existing codebases

3

About your instructor: Saikat Dutta

• Completed PhD in 2023 in Computer Science

• Research Interests: Software Engineering x Machine
Learning

• Joined Cornell in Fall 2024 as an Assistant Professor

• Industry exp: Microsoft, MSR, and AWS

• Languages: C++, Java, Python

• Office hours: Wed 11 AM – 12 PM Gates 438

4

Course Staff

• Elaine Yao
yy2282@cornell.edu
Pengyue Jiang
pj257@cornell.edu
Jacqueline Cai
jxc6@cornell.edu
Bryant Park
blp73@cornell.edu

• TA Office Hours: Wednesdays 4 - 5 PM Gates G01 (G11 for this week)

5

mailto:ey244@cornell.edu
mailto:pj257@cornell.edu
mailto:jxc6@cornell.edu
mailto:blp73@cornell.edu

Illustrated with successes and failures

• Linux kernel
• Distributed development, review

• SQLite
• Testing – 640x more test code

• Blender & Krita
• User Collaboration, Open Develop.

• Dragon 2 spacecraft (SpaceX)
• Agile Development

• Ariane 5 (1996)

• Boeing 737 MAX

• FAA Advanced Automation
System

• Therac-25

• …

6

Software bugs…

7

Activity: So, what is software engineering?

1. Turn to your neighbors. Introduce each other.

2. Discuss: what makes “software engineering” different from
“programming”?

3. Select a reporter

8

Textbook definitions

• “An engineering discipline that is concerned with all aspects of
software production”

• “Multi-person development of a multi-version program”

• “Programming integrated over time”

• “When ‘clever’ is an accusation rather than a compliment”

9

Software Engineering: Themes of this course

• Software Engineering involves the principles and practices for …
• Software Design (Modeling)

• Software Implementation (Programming)

• Software Analysis (Performance)

• Software Management and Team work

• Quality Assurance (Testing, Verification, Repair, …)

• Software Maintenance

• Professionalism

• Delivery

• …

10

Syllabus

11

Course Infrastructure

• Website: www.cs.cornell.edu/courses/cs5150/
• Slides, assignments, schedule, syllabus

• Canvas (restricted to enrolled students)
• Ed Discussion, Gradescope, Appointment reservations

• Quizzes, surveys, etc.

• Poll Everywhere: pollev.com/cs5150sp25 (use Cornell e-mail)

• Cornell GitHub: github.coecis.cornell.edu

12

http://www.cs.cornell.edu/courses/cs5150/
https://pollev.com/cs5150
https://github.coecis.cornell.edu/

Example poll

PollEv.com/cs5150sp25

13

Personal devices

• Laptops/tablets may be useful in
class for:
• Responding to polls

• Following along with demos

• Taking notes (but paper is better)

• BUT devices are distracting for
you and your neighbors

• Please do not multitask during
lecture. If you can't resist, sit in
the back

“...participants who multitasked on a laptop during a
lecture scored lower on a test compared to those

who did not multitask, and participants who were in
direct view of a multitasking peer scored lower on a
test compared to those who were not. The results
demonstrate that multitasking on a laptop poses
a significant distraction to both users and fellow

students and can be detrimental to comprehension
of lecture content.”

14

Assessment

• Lecture polls/In-class quizzes
• Perfect attendance not necessary

• Canvas Assignments, Quizzes
• 4-5 assignments

• Project deliverables
• Reports, documentation, code,

code reviews
• Scored against rubric
• Client presentations
• Peer reviews

• In-class exams (2)

• No Final Exam

15

References

• No required textbook
• All readings freely available in

electronic form

• Several recommended books,
including a free one:
• Software Engineering at Google

https://abseil.io/resources/swe-
book

• Better Embedded System
Software. Philip Koopman

• The Mythical Man-Month.
Frederick P. Brooks, Jr

• Software Engineering, Tenth
Edition. Ian Sommerville

16

https://abseil.io/resources/swe-book
https://abseil.io/resources/swe-book

Course is overfull

If you decide this course isn’t for you, that’s okay. But please drop
promptly to make room for students on the waitlist.

I cannot predict if you will get in!

For those on the waitlist (or waiting to get on the waitlist):
The instructor does not control enrollment; send questions to

cs-course-enroll@cornell.edu

17

mailto:cs-course-enroll@cornell.edu

Disclaimers about CS 5150

• This is a new version of 5150 – so schedule might change at any time!
(but hopefully not by much) – please be patient!

• Please use Ed to ask questions – fastest way to get response from
staff (reserve emails for personal/important things)

• TAs as project clients – please be respectful to them

18

The Project

19

Purpose of the project

• Experience interacting with a client other than yourself
• Requirements elicitation, acceptance testing

• Experience designing for users other than yourself

• Experience all phases of software lifecycle
• Specification, development, validation, evolution

• Practice coordinating with a team

20

Teams

• Team size: 4-5 students

• Full-semester commitment

• Two options for forming teams (by Feb 3):
1. Form a (partial or complete) team around a project
2. Get matched with a team based on preferences

• When considering teammates, check for:
• Compatible schedules, work styles
• Backend language comfort (Java, Python)
• 2+ members with frontend experience (HTML/CSS/JS)

• More about teams later in Lecture 3

21

Project options

Option 1

• Course-sponsored project
(enhancing code review tools)
• Print a review log
• Link comments to multiple files
• …

• Code Translation

• Instructor or TA will serve
“client” role

Option 2

• You find a client with a project
proposal
• Client may not be yourselves or

other students
• Must involve an existing, active

codebase (not written by you)

• Complete survey: “petition for
external project”

• Recruit on Ed Discussions

22

Demo: Gerrit

https://gerrit-review.googlesource.com

23

https://gerrit-review.googlesource.com

Project Timeline

• Semester consists of five 3-week “sessions”

• Report due at the end of each session

• Should meet with client once per session

• Two formal presentations: Midpoint and Final

• Final delivery on the last day of classes

• Time and resources are fixed, so must adjust scope to fit in time
available

24

Deliverables

• Session reports
• Plan

• Accomplishments, setbacks,
discovered work

• Peer feedback

• Work log

• Design documentation

• Test plans and reports

• Coverage analysis

• Requirements

• Code and code reviews

• User documentation

25

Activity: SwE slang

In your groups, select a new recorder and make up definitions for the
following terms (don’t Google them; just guess and reach consensus)

• Bike-shedding

• Yak shaving

• Dogfooding

• Greenfield

• MVP

• DevOps

CC-By – www.davidrevoy.com
26

Activity: SwE slang

In your groups, select a new recorder and make up definitions for the
following terms (don’t Google them; just guess and reach consensus)

• Bike-shedding: spending too much time on trivial issues

• Yak shaving: seemingly endless series of small tasks that need to be
completed before the next step in a project

• Dogfooding: Using your own products/services

• Greenfield: Create something from scratch

• MVP: Most Valuable Player

• DevOps: Developer Operations

CC-By – www.davidrevoy.com
27

Some history

28

Early software development

Grace Murray Hopper Collection, National Museum of American History
29

Structured Programming

• Arbitrary flowcharts hard to understand, verify
• Yield programs with many GOTO statements

• “Spaghetti code”

• Can restrict yourself to common patterns:
• Control structures

• Sequence

• Selection (if-then-else)

• Iteration (for, while)

• Subroutines (named sequence)

• 1968: Edsger Dijkstra publishes Go To Statement Considered Harmful

30

Software Crisis

• 1960s: computers getting faster,
can tackle bigger problems

• Software couldn’t keep up
• Over budget
• Behind schedule
• Buggy
• Unmaintainable

The major cause of the software
crisis is that the machines have

become several orders of magnitude
more powerful! To put it quite

bluntly: as long as there were no
machines, programming was no

problem at all; when we had a few
weak computers, programming

became a mild problem, and now we
have gigantic computers,

programming has become an equally
gigantic problem.

- Edsger Dijkstra, 1972

31

NATO software engineering conferences

• Held in 1968, 1969 to address
the “software crisis”
• David Gries in attendance

• Admitted inadequacy of
contemporary methods

• Agreed upon best practices for
developing software, grounded
in principles of engineering

• Established the term “software
engineering”

32

Incremental improvements

• Structured programming

• Information hiding

• Object-oriented programming

• Language enforcement (Ada)

• Formal methods (CS 4160)

• CASE tools

• UML

• Components & services

• Agile methods

• The Internet

• Open source

• Code forges

Are we still in crisis?
• No new technology, tool, or process was a

“silver bullet”

• Software has expanded in capability and
scale, but …
• Projects still behind schedule, over budget
• Inefficiency has been masked by hardware

advances
• Much software is low-quality (e.g. security)

• And the stakes are higher than ever!
• Software governs much of modern society

33

Why not treat SW like HW?

Engineers have built large, reliable
structures for millennia. Why not
take same approach to SW?

• “Easy” to change
• But costly in time, risk

• More coupled

• Leaner supply chain

• No unit production cost

• Scalable access

• Different reliability analysis

CC-By-SA Michel Mensler
34

Context of modern software engineering

https://www.informationisbeautiful.net/visualizations/million-lines-of-
code/

• Most software development is not "greenfield"
• Far more time spent in ongoing development/maintenance than in initial

development

• Most software needs to interact closely with existing systems

• Want to leverage reuse

35

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Job titles

• “Engineer” is used liberally by
employers
• Most are not certified

professionals

• Related roles:
• Site reliability engineer

• DevOps engineer

• Test software engineer

• Machine learning engineer

As an engineer, you will design,

develop and test software. You

will be responsible for the

complete life cycle of the software

you create, from development to

testing to operation.

36

Next Up

1. Read about FAA AAS

2. Count lines of code (submit on Canvas)
1. In your biggest individual project
2. In an open-source project of your choice

3. Start forming teams around projects

Reading, assignment due before next lecture
(1:25 PM Thurs, Jan 23)

Submission deadlines will be extended for students not yet enrolled in Canvas

37

	Slide 1: CS 5150: Software Engineering
	Slide 2: The Pitch
	Slide 3: About the course
	Slide 4: About your instructor: Saikat Dutta
	Slide 5: Course Staff
	Slide 6: Illustrated with successes and failures
	Slide 7: Software bugs…
	Slide 8: Activity: So, what is software engineering?
	Slide 9: Textbook definitions
	Slide 10: Software Engineering: Themes of this course
	Slide 11: Syllabus
	Slide 12: Course Infrastructure
	Slide 13: Example poll
	Slide 14: Personal devices
	Slide 15: Assessment
	Slide 16: References
	Slide 17: Course is overfull
	Slide 18: Disclaimers about CS 5150
	Slide 19: The Project
	Slide 20: Purpose of the project
	Slide 21: Teams
	Slide 22: Project options
	Slide 23: Demo: Gerrit
	Slide 24: Project Timeline
	Slide 25: Deliverables
	Slide 26: Activity: SwE slang
	Slide 27: Activity: SwE slang
	Slide 28: Some history
	Slide 29: Early software development
	Slide 30: Structured Programming
	Slide 31: Software Crisis
	Slide 32: NATO software engineering conferences
	Slide 33: Incremental improvements
	Slide 34: Why not treat SW like HW?
	Slide 35: Context of modern software engineering
	Slide 36: Job titles
	Slide 37: Next Up

