
1

CS514: Intermediate
Course in Computer
Systems
Lecture 17: October 24, 2003
Reliable Multicast

CS514

Reliable multicast is a key
component

It is a core element of pub/sub architectures
Even when not requiring ordering
guarantees
Pub/sub is a nice paradigm, but ultimately it
is about multicast

It is a core element of the group
communications systems we looked at

Every data message is multicast
So lets spend some time looking at
multicast issues

2

CS514

First, what is multicast?

One-to-many (1-M) or many-to-many (M-M)
communications

But so are cache-based CDNs, so…
Pushed 1-M or M-M communications

Paradigm is like pub/sub: Receivers join (or
subscribe) to a multicast group, senders
send (or publish) to the multicast group

Often it is real-time and “simultaneous”, but
this is not actually central to our definition

CS514

What is reliable multicast?

Pushed 1-M or M-M communications
where all members eventually receive
every message with high probability

TIB uses the word “guaranteed” when
the sender gets acknowledged
Even then, though, reception is not
100% (i.e. partitions can cause
eventual delivery failure)

This is the definition we will work with

3

CS514

What makes reliable
multicast hard?

In a word, IP multicast makes
reliable multicast hard!!!

CS514

A little IP multicast history…

Early 80’s, people started playing with IP multicast
over a single LAN

David Cheriton, Stanford, V distributed file system
This had very nice properties… efficient use of
media, simple, …
Decided to extend this to small networks of routers
And decided to model it after IPv4

Connectionless, unreliable
And even decided to use the IPv4 header

I’m not sure why…

4

CS514

A little IP multicast history…

The TCP/IP guys were enamored with the
end-to-end paradigm

Which at first only said that you have to do
things at the end
But later came to mean you should never do
things in the middle

After all, reliable unicast streams (TCP) over
an unreliable middle (IP) worked great!

Well, eventually, more-or-less
So, why not the same thing for reliable
multicast?

CS514

What makes reliable IP
multicast hard?

Three things:
1. Dealing with the “implosion” of ACKs

or NAKs
2. Avoiding receiver overrun
3. Avoiding network congestion
Note that TCP deals with the last two
only through constant feedback

(and, for congestion avoidance,
much difficulty)

5

CS514

IP multicast doesn’t deal
well with feedback

Easy enough
to transmit
packets

Each router
does only a
little work

CS514

Implosion of ACKs will kill
you

Same goes for
implosion of
receive
windows or
congestion
notifications

6

CS514

Can try NAKs instead, but…

CS514

That can kill you too

If packet loss
near source
And lots of
receivers
Then lots of
NAKs…

7

CS514

And the retransmit is
inefficient too…

Retransmit goes to
all nodes

CS514

Dealing with the implosion

It certainly is possible to aggregate
feedback messages uptree, but…
There will usually be some nodes that
slow everything down

Say 1000 receivers, chances are high
that at any time, one or more will
exhibit high drop rate, congestion, or
small receive window

8

CS514

Dealing with the implosion

Fundamentally, the simultaneity of IP
multicast generates a “weakest link” effect

In small, well engineered environments, this
can be avoided to an extent

Ultimately, you need a strategy of dropping
the slow guys

I.e., you place a floor on your send rate, and
anyone who can’t keep up should drop out

CS514

Ok, so what are the
alternatives?

The simultaneity effect must be
broken…receivers must be decoupled
from each other
Two ways:

1. Buffering in the forwarders (or other
receivers!)

2. Erasure (a.k.a. forward error correction)
coding

The latter actually works with IP multicast,
so there is hope!

9

CS514

Buffering in forwarders

CS514

Buffering in forwarders

10

CS514

Buffering in forwarders

CS514

Erasure codes

Mainly for multicasting files (not live streams)
File with M blocks is encoded as N blocks (N > M)
If any M+K blocks are received, then file can be
reconstructed

Sender cycles through N blocks over and over
Slower or more lossy receivers simply listen longer
Also, receivers can start listening at different times

11

CS514

What we’ll look at more
closely:

SRM (Scalable Reliable Multicast)
PGM (algorithm formerly known as
Pretty Good Multicast)
pbcast (Ken’s gossip-supported
multicast)
Digital Fountain (erasure code style)
Overlay Multicast

CS514

SRM (Scalable Reliable
Multicast)

Developed in the true IP multicast, E2E
model spirit
In other words, IP multicast completely
stateless, end hosts do all the work
Recall IP multicast model:

Any host can send to the group
• (Even if not a receiver, though SRM doesn’t use

this fact)
Also, IP multicast packets have a “scoping”
mechanism” (using IP’s TTL field)

• Larger TTL, packet goes further, but not precisely
defined as one hop per TTL value

12

CS514

SRM basic idea

Packets have per-sender sequence number
Receivers can tell when a packet was
missed when they receive a later packet

Or when they receive a periodic “session
message”

Receivers multicast a “repair request” for
missing packets

With limited scope, so that not all other
members see it

CS514

SRM basic idea

Packets have per-sender sequence number
Receivers can tell when a packet was
missed when they receive a later packet

Or when they receive a periodic “session
message”

Receivers multicast a “repair request” for
missing packets

But randomly timed, so that not all other
members with missing packet send a repair
request
And with limited TTL scope, so that not all
other members see it

13

CS514

SRM basic idea

Upon receiving a repair request, if the
member has the packet, it multicasts the
repair packet

Also randomly timed and with limited TTL
scope

If receiver with missing packet doesn’t hear
a repair after a while, it retransmits repair
request with larger TTL
Etc.

CS514

SRM Example

14

CS514

SRM Example

CS514

SRM Example

15

CS514

SRM Example

CS514

SRM Example

16

CS514

SRM Example

CS514

SRM Example

17

CS514

SRM timers

Set to a value proportional to distance
from sender

The closer to the sender, the smaller
the value

This way, nodes nearer to the sender
tend to respond first
True for both nodes requesting
repairs, and node providing repairs
Ideal: One repair request, one repair!

CS514

SRM excitement

Initially there was lots of excitement
about SRM

And, early results looked promising

But . . .

18

CS514

Turns out it was hard to
make SRM scale

Tension between size of scope and value of
timers

Exacerbated by vague definition of TTL
Increase in dropped packets with size of
multicast group
Congested links tended to cause dropped
repair requests and repairs

Causing yet more repair requests, which
caused still more congestion, etc.

CS514

SRM difficulties

19

CS514

SRM difficulties

CS514

SRM difficulties

20

CS514

SRM difficulties

CS514

SRM difficulties

21

CS514

PGM

Originally “Pretty Good Multicast”
From cisco

But they were sued by the PGP
(pretty good privacy) folks
So changed to “Pragmatic General
Multicast”

CS514

Router support for reliability

Not surprising that it was driven by Cisco
Idea is that routers would have “transport
layer” intelligence
NAKs travel uptree through routers towards
source
Routers remember NAKs, and transmit
resends only on interfaces that received
NAKs
Later, routers could even store packets,
retransmit from local store

22

CS514

PGM example

CS514

PGM example

23

CS514

PGM never really took off

Hard to say why, but…
Turned out to be pretty complex

Hosts had to be modified
Had to work with mix of PGM and
non-PGM routers…lots of tricky corner
cases

Didn’t really decouple receivers
Still “weakest link” problem

CS514

PGM never really took off

Possibly more to the point, PGM was not
really general
Different reliable multicasts have different
needs

Guarantees, prioritization, even ordering
PGM didn’t really do this

Ultimately, it made more sense to build
reliability into middleware hosts (like
pub/sub), and really customize it to
application needs

