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Up to now…

We’ve looked at a few forms of 
replication

Hot standby, group communications 
systems, pub/sub architectures

Or focus has been on relatively 
synchronized replication

and other strict properties, like 
ordering

Its time for a change of pace!
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Well, its still about 
replication . . .

In fact, CS514 in a way is almost 
entirely about replication!
But lets spend some time looking at 
weaker, less synchronous forms of 
“replication”

Perhaps better called “dissemination”

CS514

What is wrong with ISIS, 
Totem, Spread, etc?

In a word, scalability (that is, they 
don’t have much)

The lockstep nature of these protocols 
leads to a “weakest link” phenomenon 
… the slowest member dominates 
performance
Recall that ISIS deployment in French 
ATC was limited to groups of 5-6 
machines over LANs
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What is wrong with ISIS, 
Totem, Spread, etc?

Furthermore, they are complex 
protocols, which speaks badly for fault 
tolerance

Complex software is more buggy
And they are overkill for many 
applications

We just happen to be focusing on 
particular extreme requirements
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So what do we want?

Systems with simple protocols
Systems that have “only” probabilistic 
guarantees
Systems that scale to very large numbers of 
nodes

No “weakest link” phenomenon
Systems that are relatively insensitive to 
“churn”

Nodes coming and going
Systems that disseminate data pretty fast
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“Push” versus “pull”

Pablo showed us Content Distribution 
Networks (CDN)
As used by Akamai, these are “pull” based 
systems

User requests drive the distribution of data 
into caches

The pub/sub systems we looked at are 
“push” based systems

Publish events drive the distribution of data
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We’re interested in both

But for now we are going to focus on 
push based systems

First gossip, then reliable multicast (of 
various forms)

Later we’ll look (a little more) at pull 
(caching) based systems
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Basic goal:

Distribute some data among a group 
of nodes

Should be fast, but no synchrony 
guarantees
Should be robust (some nodes may 
crash, but still works)
Should scale to many nodes
Should be efficient

CS514

Basic goal: fast, robust data 
dissemination
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Basic goal: fast, robust data 
dissemination
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One way…sender sends 
message to all other nodes one 
at a time

Efficient, in that exactly N-1 copies are sent
But slow !

(N-1)*L, where N is the number of nodes, 
and L is the time it takes to send the 
message

So to overcome this, we want to exploit 
some kind of parallelism
(Also, how does the sender learn about all 
the other nodes?)
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Another way…build a tree
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Another way…build a tree

Very fast (lots of parallelism)
Very efficient

N-1 copies sent
And spread over many nodes (not just one 
sender)

But fragile, and complex
Hard to build these trees
If one node crashes, other nodes are 
partitioned, at least for a while
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Tree partition

CS514

Another way…flood the data
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Another way…flood the data
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Another way…flood the data
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Another way…flood the data
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Another way…flood the data

Robust, fast, and scales well
But quite inefficient

Most nodes receive the message 
multiple times…worse with higher 
node degree
Also, each node must remember 
identifier of specific received 
messages (so that the flood can 
terminate)
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Another way…gossip (a.k.a. 
epidemic algorithm)

Gossip is something like flooding
Robust, not perfect efficiency

Flooding paradigm is message forwarding
Gossip paradigm is state exchange

Flooding nodes forward messages 
immediately

Gossip nodes exchange state periodically
Flooding nodes keep list of recent message 
identifiers

Gossip nodes keep current state
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Another way…gossip (a.k.a. 
epidemic algorithm)

Flooding nodes talk to small number of 
“neighbors”

Gossip nodes talk at random with any other 
node

Flooding is a fast burst of activity
Gossip is a slow persistent burn

Ultimately gossip is more robust because it 
continuously tries to synchronize state

With flooding, if a node fails to receive a 
message, it doesn’t get a second chance
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History of Gossip

Grapevine/Clearinghouse Directory 
Service (Demers, Xerox PARC, 1987)
Refdbms (Golding, UCSC, 1993)
Bayou (Xerox PARC, 1995)
Bimodal Multicast (Cornell, 1998)
Astrolabe (Cornell, 1999)
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State Monotonic Property

A gossip message contains the state of the 
sender of the gossip.
The receiver uses a Merge function to 
merge the received state and the sent state:

State’ = Merge(State, Gossip)
Need some kind of monotonicity:

State’ ≥ State, State’ ≥ Gossip
Without this, old “news” will constantly chase 
new “news”
Can be implemented with a per datum 
sequence number set by the state originator
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Anti-Entropy

This gossip scheme with monotonic 
merge is sometimes called anti-
entropy.
The protocol is called a simple
epidemic.
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How fast (and how well) 
does gossip spread?

Epidemic theory (e.g., Bailey …)
Assume a fixed population of size n.
For now, assume homogeneous 
spreading

simple epidemic: anybody can infect 
anyone else with equal probability

Assume k members already infected.
Assume infection occurs in rounds.
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Probability of Infection?

What is the probability Pinfect(k, n) that a 
particular uninfected member is infected in 
a round if k are already infected?

Pinfect(k, n)
= 1 – P(nobody infects member)
= 1 – (1 – 1/n)^k

k n. .
. E(#newly infected members) =

(n – k) × Pinfect(k, n)
(binomial distribution)
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Phase 1: fast growth of 
infection

Early on, most state exchanges result in a 
new infection

Initial rate of infection: factor of 2
In the middle, start reaching saturation

Half way:  factor of 1.4
In the end, most data exchanges are 
redundant, but the remaining uninfected 
nodes are infected rapidly 

Near end, factor ≈ 1
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Intuition:  2 phases

Phase 1:  1 → n/2  (first half)
Phase 2:  n/2 → n  (second half)
For large n, Pinfect(n/2, n) ≈ 1 − (1/e)^.5 ≈ .4
Half way:

• Infection grows by factor 1.4
• Uninfection declines by factor .4
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Exponential growth

Taken together:  #rounds necessary to infect 
the entire population grows O(log n)
Base of log:  1.585 (experimental)
Even under bad conditions (see later):

member failures
message loss
but base of log decreases
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Number of new infections

CS514

Number of infected nodes
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Expected #rounds

CS514

Push versus pull

If data entries are big, it is costly to 
“push” complete state in each round
Instead, send a “digest” of the state, 
and the recipient can request anything 
it doesn’t already have

I.e. the timestamp of each data entry
This is an optimization that doesn’t 
change the basic concept
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Case Study 1: Failure 
Detection

Robust and accurate FD over a wide 
area is difficult
All nodes pinging all other nodes 
doesn’t scale
One or a few nodes pinging all other 
nodes isn’t robust

And doesn’t scale for those few nodes
What can gossip do for us here?
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Informal Properties

Mistake probability fixed
(independent of #members)

Scales in #members (O(nlogn))
Scales in bandwidth (O(n))
Resilient against message loss
Resilient against crashes
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Environment

Crash failures and partitions
Unbounded message delay
Negligible clock drift
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Basic Gossip Protocol

Each member maintains a list of (address, 
heartbeat) pairs
Periodically, each member gossips:

increments its own heartbeat
sends list to randomly chosen member

On receipt of gossip, merge lists
Each member maintains last time heartbeat 
increased for each other
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Linear Bandwidth

Gossip message grows linearly with n
#members grows linearly with n

Slow down gossiping linearly:

BnTgossip /8=

How long to wait before reporting failure?
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Model

Each micro-round one random 
member gossips to another random 
one.
We track “infection” of one heartbeat 
of one member.
Calculate probability that k members 
are infected in micro-round i:
f members failed from start

)( kkP i =
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Failure Caveat

Assume initial member does not fail
To simplify analysis

This affects outcome by at most one 
round:

Initially infected member would have 
to crash right after it gossips
So does the recipient of the gossip, 
and so on.
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Analysis
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Failure Detection Time

B = 250 bytes/sec/member

CS514

Seems slow…

Takes ~35sec to detect a down 
member with .999% correctness

250 bytes/second/member
50 members at 8 bytes per member
= 400 bytes per state transfer
Which means 1.6 sec per round
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Quality of Detection

CS514

Effect of Failed Members
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Effect of Message Loss
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What to make of this

The approach is very robust
Consider message loss, node failure

But also slow
Because the whole state is exchanged 
each round, and bandwidth kept 
rather low

Turns out an alternative approach is 
faster, and nearly as robust . . .
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Faster approach to failure 
detection

Use gossip to advertise complete set of 
members

This can be somewhat slow
We are interested in quickly detecting failure, 
not newly joined members

Have each member ping 4-5 others
Use an arbitrary convention to decide 
which…
Such as, ping four members with two 
immediately higher and two immediately  
lower member IDs  

CS514

Faster approach to failure 
detection

Direct ping can detect crash with high 
probability in 10 – 30 seconds

Depending on quality of 
communications path

When detect failure, gossip failure 
with very short period (100ms)
Require multiple members to detect 
failure (i.e. 2 out of 4)
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Simple gossip has some 
scaling issues

Requires full membership
doesn’t scale

Load on network grows quickly
linear if one source of information

• One source x N members

quadratic if all participants can contribute
• N sources x N members

Led to demise of Xerox Clearinghouse
(and the victory of DNS)

CS514

High load on routers

.. .
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Idea:  add locality to gossip

Gossip mostly in your neighborhood
Occasionally gossip farther away
Generalize to multiple levels
Resembles spread of (real) viruses

CS514

Domains

Smallest domain:  local host
Largest domain:  all hosts
Domains are fully nested (form a tree) 

. .. ..
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Multi-level Gossip Protocol

Start with local domain
Pick a member at random
If picked self, go to next level up

If no more levels, don’t gossip
Send gossip to chosen member

pick random subdomain in chosen member
if not host-level, then descend into 
subdomain
otherwise send message

CS514

Better properties

Most gossips are local
Fewer problems with partitioning
At every level, about the same gossip 
load
Within any domain, there is, on 
average, one gossip message from 
every node to every other node
But, propagation is slower:
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Two-level hierarchy

CS514

Two-level cost
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No longer logarithmic...

. .. ..

• #levels in the domain tree is O(log n)
• resulting growth, log^log, is polynomial

CS514

Problems

Polynomial growth
(degree is small though, like .2)
if n = 1,000,000,000, branching factor is 100, 
and gossip every second, 
dissemination time < 10 min.

Still requires full membership
Message sizes may grow linearly if 
everybody contributes information (e.g., a 
sequence number for each member)
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New idea (Astrolabe)

Reduce information content with 
distance

e.g., go from exact values to average 
values
from exact membership to 
representatives
use distance metric in the domain tree

CS514
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