
1

CS514: Intermediate
Course in Computer
Systems
Lecture 15: Oct. 18, 2003
Epidemic Protocols
(or, Gossip is Good)
Slides by Robbert Van Renesse

CS514

Up to now…

We’ve looked at a few forms of
replication

Hot standby, group communications
systems, pub/sub architectures

Or focus has been on relatively
synchronized replication

and other strict properties, like
ordering

Its time for a change of pace!

2

CS514

Well, its still about
replication . . .

In fact, CS514 in a way is almost
entirely about replication!
But lets spend some time looking at
weaker, less synchronous forms of
“replication”

Perhaps better called “dissemination”

CS514

What is wrong with ISIS,
Totem, Spread, etc?

In a word, scalability (that is, they
don’t have much)

The lockstep nature of these protocols
leads to a “weakest link” phenomenon
… the slowest member dominates
performance
Recall that ISIS deployment in French
ATC was limited to groups of 5-6
machines over LANs

3

CS514

What is wrong with ISIS,
Totem, Spread, etc?

Furthermore, they are complex
protocols, which speaks badly for fault
tolerance

Complex software is more buggy
And they are overkill for many
applications

We just happen to be focusing on
particular extreme requirements

CS514

So what do we want?

Systems with simple protocols
Systems that have “only” probabilistic
guarantees
Systems that scale to very large numbers of
nodes

No “weakest link” phenomenon
Systems that are relatively insensitive to
“churn”

Nodes coming and going
Systems that disseminate data pretty fast

4

CS514

“Push” versus “pull”

Pablo showed us Content Distribution
Networks (CDN)
As used by Akamai, these are “pull” based
systems

User requests drive the distribution of data
into caches

The pub/sub systems we looked at are
“push” based systems

Publish events drive the distribution of data

CS514

We’re interested in both

But for now we are going to focus on
push based systems

First gossip, then reliable multicast (of
various forms)

Later we’ll look (a little more) at pull
(caching) based systems

5

CS514

Basic goal:

Distribute some data among a group
of nodes

Should be fast, but no synchrony
guarantees
Should be robust (some nodes may
crash, but still works)
Should scale to many nodes
Should be efficient

CS514

Basic goal: fast, robust data
dissemination

6

CS514

Basic goal: fast, robust data
dissemination

CS514

One way…sender sends
message to all other nodes one
at a time

Efficient, in that exactly N-1 copies are sent
But slow !

(N-1)*L, where N is the number of nodes,
and L is the time it takes to send the
message

So to overcome this, we want to exploit
some kind of parallelism
(Also, how does the sender learn about all
the other nodes?)

7

CS514

Another way…build a tree

CS514

Another way…build a tree

Very fast (lots of parallelism)
Very efficient

N-1 copies sent
And spread over many nodes (not just one
sender)

But fragile, and complex
Hard to build these trees
If one node crashes, other nodes are
partitioned, at least for a while

8

CS514

Tree partition

CS514

Another way…flood the data

9

CS514

Another way…flood the data

CS514

Another way…flood the data

10

CS514

Another way…flood the data

CS514

Another way…flood the data

Robust, fast, and scales well
But quite inefficient

Most nodes receive the message
multiple times…worse with higher
node degree
Also, each node must remember
identifier of specific received
messages (so that the flood can
terminate)

11

CS514

Another way…gossip (a.k.a.
epidemic algorithm)

Gossip is something like flooding
Robust, not perfect efficiency

Flooding paradigm is message forwarding
Gossip paradigm is state exchange

Flooding nodes forward messages
immediately

Gossip nodes exchange state periodically
Flooding nodes keep list of recent message
identifiers

Gossip nodes keep current state

CS514

Another way…gossip (a.k.a.
epidemic algorithm)

Flooding nodes talk to small number of
“neighbors”

Gossip nodes talk at random with any other
node

Flooding is a fast burst of activity
Gossip is a slow persistent burn

Ultimately gossip is more robust because it
continuously tries to synchronize state

With flooding, if a node fails to receive a
message, it doesn’t get a second chance

12

CS514

History of Gossip

Grapevine/Clearinghouse Directory
Service (Demers, Xerox PARC, 1987)
Refdbms (Golding, UCSC, 1993)
Bayou (Xerox PARC, 1995)
Bimodal Multicast (Cornell, 1998)
Astrolabe (Cornell, 1999)

CS514

State Monotonic Property

A gossip message contains the state of the
sender of the gossip.
The receiver uses a Merge function to
merge the received state and the sent state:

State’ = Merge(State, Gossip)
Need some kind of monotonicity:

State’ ≥ State, State’ ≥ Gossip
Without this, old “news” will constantly chase
new “news”
Can be implemented with a per datum
sequence number set by the state originator

13

CS514

Anti-Entropy

This gossip scheme with monotonic
merge is sometimes called anti-
entropy.
The protocol is called a simple
epidemic.

CS514

How fast (and how well)
does gossip spread?

Epidemic theory (e.g., Bailey …)
Assume a fixed population of size n.
For now, assume homogeneous
spreading

simple epidemic: anybody can infect
anyone else with equal probability

Assume k members already infected.
Assume infection occurs in rounds.

14

CS514

Probability of Infection?

What is the probability Pinfect(k, n) that a
particular uninfected member is infected in
a round if k are already infected?

Pinfect(k, n)
= 1 – P(nobody infects member)
= 1 – (1 – 1/n)^k

k n. .
. E(#newly infected members) =

(n – k) × Pinfect(k, n)
(binomial distribution)

CS514

Phase 1: fast growth of
infection

Early on, most state exchanges result in a
new infection

Initial rate of infection: factor of 2
In the middle, start reaching saturation

Half way: factor of 1.4
In the end, most data exchanges are
redundant, but the remaining uninfected
nodes are infected rapidly

Near end, factor ≈ 1

15

CS514

Intuition: 2 phases

Phase 1: 1 → n/2 (first half)
Phase 2: n/2 → n (second half)
For large n, Pinfect(n/2, n) ≈ 1 − (1/e)^.5 ≈ .4
Half way:

• Infection grows by factor 1.4
• Uninfection declines by factor .4

CS514

Exponential growth

Taken together: #rounds necessary to infect
the entire population grows O(log n)
Base of log: 1.585 (experimental)
Even under bad conditions (see later):

member failures
message loss
but base of log decreases

16

CS514

Number of new infections

CS514

Number of infected nodes

17

CS514

Expected #rounds

CS514

Push versus pull

If data entries are big, it is costly to
“push” complete state in each round
Instead, send a “digest” of the state,
and the recipient can request anything
it doesn’t already have

I.e. the timestamp of each data entry
This is an optimization that doesn’t
change the basic concept

18

CS514

Case Study 1: Failure
Detection

Robust and accurate FD over a wide
area is difficult
All nodes pinging all other nodes
doesn’t scale
One or a few nodes pinging all other
nodes isn’t robust

And doesn’t scale for those few nodes
What can gossip do for us here?

CS514

Informal Properties

Mistake probability fixed
(independent of #members)

Scales in #members (O(nlogn))
Scales in bandwidth (O(n))
Resilient against message loss
Resilient against crashes

19

CS514

Environment

Crash failures and partitions
Unbounded message delay
Negligible clock drift

CS514

Basic Gossip Protocol

Each member maintains a list of (address,
heartbeat) pairs
Periodically, each member gossips:

increments its own heartbeat
sends list to randomly chosen member

On receipt of gossip, merge lists
Each member maintains last time heartbeat
increased for each other

20

CS514

Linear Bandwidth

Gossip message grows linearly with n
#members grows linearly with n

Slow down gossiping linearly:

BnTgossip /8=

How long to wait before reporting failure?

CS514

Model

Each micro-round one random
member gossips to another random
one.
We track “infection” of one heartbeat
of one member.
Calculate probability that k members
are infected in micro-round i:
f members failed from start

)(kkP i =

21

CS514

Failure Caveat

Assume initial member does not fail
To simplify analysis

This affects outcome by at most one
round:

Initially infected member would have
to crash right after it gossips
So does the recipient of the gossip,
and so on.

CS514

Analysis

P k k
n

n f k
n

Pinc arrival() = ×
− −
−

×
1

P k k P k P k k
P k P k k

i inc i

inc i

() () ()
(()) ()

+ = = − ⋅ = −
+ − ⋅ =

1 1 1
1

P r n f P k n fmistake r() ()(())≤ − − = −1

22

CS514

Failure Detection Time

B = 250 bytes/sec/member

CS514

Seems slow…

Takes ~35sec to detect a down
member with .999% correctness

250 bytes/second/member
50 members at 8 bytes per member
= 400 bytes per state transfer
Which means 1.6 sec per round

23

CS514

Quality of Detection

CS514

Effect of Failed Members

24

CS514

Effect of Message Loss

CS514

What to make of this

The approach is very robust
Consider message loss, node failure

But also slow
Because the whole state is exchanged
each round, and bandwidth kept
rather low

Turns out an alternative approach is
faster, and nearly as robust . . .

25

CS514

Faster approach to failure
detection

Use gossip to advertise complete set of
members

This can be somewhat slow
We are interested in quickly detecting failure,
not newly joined members

Have each member ping 4-5 others
Use an arbitrary convention to decide
which…
Such as, ping four members with two
immediately higher and two immediately
lower member IDs

CS514

Faster approach to failure
detection

Direct ping can detect crash with high
probability in 10 – 30 seconds

Depending on quality of
communications path

When detect failure, gossip failure
with very short period (100ms)
Require multiple members to detect
failure (i.e. 2 out of 4)

26

CS514

Simple gossip has some
scaling issues

Requires full membership
doesn’t scale

Load on network grows quickly
linear if one source of information

• One source x N members

quadratic if all participants can contribute
• N sources x N members

Led to demise of Xerox Clearinghouse
(and the victory of DNS)

CS514

High load on routers

.. .

.

.

....

..

.

.

. .

subnet

backbone

27

CS514

Idea: add locality to gossip

Gossip mostly in your neighborhood
Occasionally gossip farther away
Generalize to multiple levels
Resembles spread of (real) viruses

CS514

Domains

Smallest domain: local host
Largest domain: all hosts
Domains are fully nested (form a tree)

.

28

CS514

Multi-level Gossip Protocol

Start with local domain
Pick a member at random
If picked self, go to next level up

If no more levels, don’t gossip
Send gossip to chosen member

pick random subdomain in chosen member
if not host-level, then descend into
subdomain
otherwise send message

CS514

Better properties

Most gossips are local
Fewer problems with partitioning
At every level, about the same gossip
load
Within any domain, there is, on
average, one gossip message from
every node to every other node
But, propagation is slower:

29

CS514

Two-level hierarchy

CS514

Two-level cost

30

CS514

No longer logarithmic...

.

• #levels in the domain tree is O(log n)
• resulting growth, log^log, is polynomial

CS514

Problems

Polynomial growth
(degree is small though, like .2)
if n = 1,000,000,000, branching factor is 100,
and gossip every second,
dissemination time < 10 min.

Still requires full membership
Message sizes may grow linearly if
everybody contributes information (e.g., a
sequence number for each member)

31

CS514

New idea (Astrolabe)

Reduce information content with
distance

e.g., go from exact values to average
values
from exact membership to
representatives
use distance metric in the domain tree

CS514

Related Literature

The Mathematical Theory of Infectious Diseases and its
Applications. N.T.J. Bailey. Hafner Press. 1975.
Epidemic Algorithms for Replicated Database
Maintenance. A. Demers et al. Proc. of the 6th ACM
PODC conf. August 1987.
A Weak-Consistency Architecture for Distributed
Information Services. R.A. Golding. Computing Systems
5(4), Fall 1992.
Flexible Update Propagation for Weakly Consistent
Replication. K. Petersen et al. Proc of the 16th ACM
SOSP conf. October 1997.
My home page: http://www.cs.cornell.edu/home/rvr

