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Definition 1 The relation “p is an immediate subformula @f’ is the smallest relation such that

v is an immediate subformula efp

1 andy, are immediate subformulas gf A ¢

1 andy, are immediate subformulas ¢f Vv ¢,

1 andp, are immediate subformulas of = .
The relation “p is a subformula of)” is the smallest relation such that

e o Is a subformula of
e if © is an immediate subformula gf, theny is a subformula of)

e if p is a subformula of) and is a subformula ofy, theny is a subformula ofy.

The only formulas having no immediate subformulas are propositional variables (thaisign
immediate subformula gf never holds). Propositional variables are often cadiieanic formulas
Other formulas are often callesbmpound formulasWe say a propositional variableoccursin
@ if pis a subformula of.

Definition 2 Thedegree of a formulé defined by the following (primitive) recursive function:

degree(y) = case @ of
(var,p) — 0
(not,v) — degreey) + 1
(and,1py,19) — degreeyy + degreeips + 1
(or,11,19) — degreep; + degreeips + 1
{(imp, Y1,19) — degreely + degreeipy + 1
end.

For examplep A (¢ vV —r) has degree 3, whilg A (¢ vV ) has degree 2.
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Proposition 3 ¢ is an atomic formula (i.e., a propositional variable) if and onlyléree(p) = 0.

Proof. Immediate from the definition of degree. O

The degree of a formula lets us prove facts about thé'set. of all formulas by induction on the
degree of formulas.

Proposition 4 The Induction Principle for Formulas L&t be a property of formulas. If

(i) P(p) holds for every formula of degree O;

(i) forall n > 0, if P(y) holds for every formulg of degree< n, thenP(y) holds for every
formula of degree:;

ThenP(y) holds for every formule.

Proof. Let X be the se{y | P(y) does not hold. We want to show thaP holds for all formulas
v, l.e., thatX is empty.

We proceed by contradiction. Assumé& not empty. By a well-known property of the natural
numbers, there exists a formulg € X that has minimal degree,, i.e., such that there is no
formula in X with a smaller degree (there could be other formulas with the same degree). Let
be an arbirary formula with degree< ng. Sincedegree(p) < degree(ypo), ¢ cannot be inX,
thereforeP(y) holds. Sincep was arbitrary,P(y) holds for allps with degree less tham,. By
property (i), then, this means th&t(y,) holds, i.e.,po ¢ X, a contradiction. ThereforeX is
empty, as required. O

Proposition 5 For every formulap, the setSub(yp) = {¢ | ¥ is a subformula of>} is finite.

Proof. By using the Principle of Induction for Formulas.

First, we check the base caseylhas degreé, theny is a propositional variable, anghb(yp) =
{}, which is finite.

Second, let: > 0, and assume for all formulas of degree< n, that Sub(y) is finite. Lety be
a formula of degree n. Since > 0, ¢ is a compound formula, and thus either of the form,
1 A g, Yy V ahg, OF )y = 1. If @ is ), thendegree(v)) = n — 1 < n, therefore by induction
hypothesisSub(v) is finite. SinceSub(p) = Sub(v) U{p}, Sub(yp) isfinite. If ¢ iS 11 A1)q, then
degree(1)1) and degree(1,) are both< n, and by the induction hypothesis, we have (1)) and



Sub(1)q finite; sinceSub(y) = Sub(11) U Sub(vs) U {¢}, Sub(y) is finite. A similar argument
works forVv and=-. O

Assume a séb = {¢t, f} of truth values Let S be a set of formulas.
Definition 6 A valuationv on S'is a functionv : S — B .
We sayy is true under valuation if v(p) = ¢. Similarly, ¢ is false under valuationis v(¢) = f.

Definition 7 A Boolean valuation is a valuation onForm such that:

o v(—p) =tifandonlyifu(yp) = f

e v(p A1) =tifand only ifv(y) = tanduv(y) =t

e v(pVvy)=tifandonlyifv(p) =torv(y) =t

e v(p =) =tifand only if wherv(p) = ¢, thenv(y) = t.

Given two valuations, v, if v1(¢) = va(yp), thenv; andv, agree onp. If v; andv, agree on all
formulas in a seb, thenv; andv, agree onS.

Let .S; and.S; be sets of formulas witls; C S,. If v; is a valuation orb;, v, is a valuation ord,,
andv; andv, agree onSy, thenuv, is anextensiorof v;.

An interpretationu, is a valuation on propositional variables.

Proposition 8 Letv, be an interpretation. I andv’ are Boolean valuations that extemgl, then
v andv’ agree on all formulas.

Proof. By induction on formulas. O

Thus, an interpretation can extendaiomosta single Boolean valuation.

We can construct such a valuation explicitly:

value(p,vy) = case p of

(var,p) — vo(p)

(not, ) — vnot(value(psi,vy))

(and, Y1, o) — vand(value (i, vo), value (s, vo))
Eor L1, 9) — wvor(value(1)y, vy), value(hy, vg))

imp, 1, Pg) — vimp(value(y, vo), value (12, vo))
end.



wherewvnot(t) = f, vnot(f) = t; vand(t,t) = t, vand(t, f) = vand(f,t) = vand(f, f) =
f; vor(t,t) = wvor(t,f) = wvor(f,t) = t, vor(f,f) = f; andvimp(t,t) = vimp(f,t) =
vimp(f, ) = t, vimp(t, f) = f.

Proposition 9 For every interpretation, value(—, vy) is a Boolean valuation that extends

Proof. By induction on formulas. O

Proposition 10 For every interpretationy, there is auniqueBoolean valuation that extends,
namely,value(—, vy.

Proof. Combining the previous two propositions. O

We often writevy = ¢ for value(p, vg) = t, and say thap is true under interpretation,. Simi-
larly, we writev, [~ ¢ for value(p,vy) = f, and say thap is false under interpretation,.

Proposition 11 Let ¢ be a formula. If the interpretations, and v{, agree on all propositional
variables that occur inp, thenvalue(p, vy) = value(p, v}).

Proof. A straightforward induction will not quite work. We need to prove the slightly stronger
statement: if the interpretations andv; agree on all propositional variables that occurgin
then for all subformulas) of ¢, value(, vy) = value(z), vy). Clearly, this implies the result we
want, sincep is a subformula ofp. And establishing the stronger result is a simple application of
induction on formulas. O



