CS486 ����������� Applied
Logic��� ����������� Assignment
9� ����������� Due� Thurs, April 19, 2001
����������������������� ����������������������� ����������������������� ����������������������� ����������������������� �����������������������
Reading:�������� Please read The Foundations of Mathematics,
by Stewart & Tall, to page 80.� Most
of this is a review.
Exercises:
1.
Monoids
A monoid is an algebraic
structure with one operation, op, which is associative and has a unit
element, 1, such that
x
op 1 = x�� and��
1 op x = x.
Say that a monoid is commutative
iff x op y� =� y op x, and is idempotent iff
x op x = x.
(a)���� Write the axioms for a commutative
idempotent monoid using first-order logic.
Prove or disprove using
first-order logic that:
(b)����������� The unit element of a monoid is unique.
(c)����������� An idempotent monoid is commutative.
2.
Boolean
Rings
(a)���� A Boolean ring R is a ring (with
unit) such that x * x = x for all
x � R.� Show that any Boolean ring is commutative,
i.e.,
x * y� =� y
* x for all x, y � R.
(b)���� Define x + y as x � y, -x as x, and x * y as x � y.
Take 0 as true (T) and 1 as
false (^).
Show that with these
definitions the class of propositions, Prop, is a Boolean ring.� Use the truth definition to prove properties
of the logical connectives and constants.
Note, you need not express
this in first-order logic.
3.
Problem
7, page 82, in Stuart & Tall.