CS486 Applied
Logic Assignment
5 Due Thursday, Mar 8, 2001
Reading: Please read the handout on second-order
propositional logic, P2.
Read again the section on compactness (Smullyan, p.
30-38).
Exercises:
Consider these P2 formulas:
i.
"p.(p
É "q.(q
É p))
ii.
"p.(p
É q) É "r.r
iii. "p.((p
É "q.q)
É ~p)
iv.
("q.q)
É "p.(p
É p)
1.
Apply
the definition of free variables, FV in the handout, to the above formulas.
2.
Which
of the formulas is logically valid?
Prove your answer.
3.
Eliminate
the quantifiers in each formula using the definition of Boolean value for a P2
formula.
4.
Solve
the exercise on p. 38 of Smullyan.
5.
OPTIONAL: Show where Tukey’s lemma fails
if the definition of finite character is this
F(P) = if for all finite sets K, P(K), for K a subset of S then
P(S).