26 Mar The Gaussian Distribution For a random variable X taking values in R or even in $R \circ \{\pm \infty\}$ its cumulative distribution Function CDF 3 $F_{X}(t) = Pr(X \leq t)$ If $Pr(X = \pm \infty) = 0$ then $\lim_{t \to -\infty} F_X(t) = 0$ and $\lim_{t \to +\infty} F_{x}(t) = 1$ When Fx is differentiable its derivative tx is called the probability density function of Xand satisfies $f_X \ge 0$ and $\int f_X(H) dt = 1$. "Right way" to think about fx is that $\Pr\left(\chi_{\epsilon}\left[t-dx, t+dx\right]\right) \approx f_{\chi}(t) \cdot (2 dx)$ $LHS-RHS = o(d_X) \quad as \quad d_X \rightarrow 0.$

Astele: For O<dx<t $f_{\chi}(t) \cdot (2 dx) \approx \Pr(\chi \in (t - dx, t + dx))$ $= \int \left(\chi^2 \in \left[t^2 - 2t dx + dx^2, t^2 + 2t dx + dx^2 \right] \right)$ $\approx f_{\chi^2}(t^2) \cdot (4t dx) + 0(dx^2)$ $f_{x}(t) = 2t \quad f_{z}(t^{2})$ 0,1The uniform distribution on $F_{X}|t|= \int_{1}^{0} t + t < 0$ $f_{X}|t|= \int_{1}^{0} t + iF = 0 \le t \le 1$ 1 + F = t > 1-t < 0 Unif (0,1] has A random sample from independent uniformly vandom ligits in Linary. Fact: IF X is any rondom unrighte with Fy continuous, than)=: Y is uniform [0,1] distributed. $Br(\lambda \leq f) = 0f$ Becnue

Reverse Fact. IF Y is uniformly distrib strictly and F is a c-ntinuous nincreasing function Sti $F(t) \rightarrow 0$ as $t \rightarrow -\infty$ $F(t) \rightarrow 1$ as $t \rightarrow +\infty$ then $F^{-1}(Y) =: X$ is a Vandom variable where OF & F. with rate λ . EX. Exponential distribution $F_{x}(t) = 1 - e^{-\lambda t} \cdot \left(\frac{P(x > t)}{P(x > t)} - e^{-\lambda t} \right)$ continuous analogue of geometric distinbution. To draw samples from $Exp(\lambda)$, 1. Sample Y~ U[0,1] 2. Output $X = F_{X}^{-1}(Y) = -\frac{1}{\lambda} ln(1-Y)$ The normal distribution N(0,1) is the

			- /	, .	
• •	· · ·	distribution with de	ensity 2	· · · · · · · ·	· · · · · · · · · ·
· ·	· · · ·	$f(t) = \frac{1}{2}$		· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · ·	· · · ·	where Z is a	normalitrhp	Const. St	t. SFlt] dt=1
• •				· · · · · · · ·	· · · · · · · · · · ·
• •	· · ·		· · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·

Central Linito Theorem IF X1, X2, X3,.... is an infinite sep of indep identically distributed random variables with Finite expected value M2 finte variance then $\left[\frac{X_1 + \dots + X_n}{n} - \mu\right] \xrightarrow{d} \mathcal{N}(0, 1)$ where Y(n) d > Y means $\forall t \mid F_{Y(n)}(t) - F_{Y}(t) \mid \rightarrow 0$ as $n \rightarrow 20$, The CDF of N(0,1) has vo closed form. if XX are independent Key olar. N(0,1) then from Sampler density probab, [, by

(x,y) [(X,Y) kinds in A provided square of side length VE Pr(YeIy) Iy $\sim \sqrt{\epsilon} \cdot f_{y}(y)$ $\approx \mathcal{E} \cdot f(x) \cdot f(y)$ $\Pr(X \in J_X)$ $\approx \sqrt{e} \cdot f_{\chi}(x)$ ∞ $-\frac{1}{Z}(x+y^2)$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$ dx dy $-\infty$ $-\infty$ 215 $\int \frac{1}{z^2} e^{-\frac{1}{z}t^2} r dr d\theta$ $\theta = 0$ r = 0 derivative of 1-e-2r 1 - 2YS. J. Maria du u=0 **θ**こ υ $Z = \sqrt{2\pi}$ $Z^{-} = QT$ θ and $u = \left| -e^{-\frac{1}{2}r} \right|^2$ are

unit distrib. indep and $\left[0, 2\pi\right)$ and $\left(0, 1\right)$ $0 \sim$ To Sample a randon point in R² with independent N(0,1) cosselhates. $\theta \sim \text{Unif}(0,2\pi)$ L. Draw $n \sim nnif (0,1)$ Z. Draw $\Gamma = \sqrt{-2ln(l-u)}$ Z Let 4. Convert $((\Gamma, \mathcal{O}))$ and the