24 Mar The Probabilistic Method K(k, 2) = minimum n sit, every graph Recall' with a vertices has a clique on k vurtices or an independent set on & vertices. $R(k, l) \leq 2^{k+l-3}$ Last time $R(k,k) \ge 2^{(k+1)/2}$ (if $k \ge 3$) Today: Det A k-Ramsey graph is one with me clique of size k nor any indep set of size k. Plan: love that for n=2² a random sample from G(n, z) has pus prob of being a K-Ramsey graph. = 4JZ ~ 5.6 25 $\binom{n}{k} = \frac{n(n-1)(n-1)(n-k+1)}{k(k-1)(n-1)} < \frac{1}{2} \cdot (\frac{n}{2})^{k}$ $K_{j} > \mathcal{S}_{k+1}$ because

Expected # of k-cliques in G(n,z). $\binom{n}{k} \binom{1}{z} \binom{k}{z} = \binom{n}{k} \cdot 2^{-\frac{1}{2}k} \binom{k-1}{z}$ $< \frac{1}{2} \cdot \left(\frac{n}{2}\right)^k \cdot \left[2^{-\frac{k-l}{2}}\right]^k$ $\mathbb{E}\left(\# \ k-\epsilon \ liq ves\right) \leq \frac{1}{2} \cdot \left(\frac{n}{2^{\frac{k+1}{2}}}\right)^k$ $\mathbb{E}\left(\frac{1}{k} \text{ k ind sets}\right) < \frac{1}{2} \left[\frac{n}{2^{k+1}}\right]^{k}$ Pr (I at least clique or ind set of size k) $< \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}$ $n < 2^{\frac{k+l}{2}}$ This probability is < 1. Pr(G(n, 2) is a k-Ransey graph) only de k-Rømsey graphs exist,

when n<2^{k/2} they are INCREDIBLY PLENTIFUL! Amost every sigh on a vertices is k-hamsey. Explicit Constructions. k-Ransey graphs with (C a constant > 0) $(X_{in} L_{i}) Z_{023})$ vertices, Chattop nothpay & Zucker man] Previously Girth and Uromatic Number Def. A k-coloring of a graph is a function from $V(G) \rightarrow C$ where (15 a set of K Colors. K-coloring is proper it The edge endpoints of every Listinct Cohars,

Jf G has clique of size k+1 it cannot have a posper k-coloring. (ligeonhole =) 2 vertices of the clique) have some color Det. The chromotic number X(G)is the minimum k st. G has a paper K-coloring. Def. The girth Z(G) is the number of edges in the shortes! cycle. Or y(G)=00 if G has no cycles. Example of $\chi(G) = \infty$ \mathcal{R} $() > \infty$

Graph of high girth are "locally tree-like," IF $\gamma(G) > 2r$ then a BFS around any untex with "search radius r" will not discover a cycle. Theorem (Erdős) For all g, K< 20 there exist finite graphs (with y(G) > q and x(G) > k. Proof. Choose p carefully and show G(n,p) has a large subgraph with both of these properties with pos probability, # of cycles of length 5g. Expected $\frac{1}{n} \leqslant \rho \leqslant \frac{1}{n} \left(\frac{n}{4}\right)^{9}$ TISSume Every cycle of length I consists of $V_{o}, V_{l}, \ldots, V_{e-1}, V_{l} = V_{o}$ such that (v_{i-1}, v_i) is prevent in G(n, p)for i = 1, 2, ..., k.

such sequences $\leq N$. Pr(all l uges of the cycle are present) = p. $E[* cycles of level l) \leq n^2 p^2$ $E[* cycles of length <math>sg] s \sum_{l=3}^{n} (pn)^{l}$ $\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{2}$ $pn \leq \left(\frac{n}{4}\right)^{3}$ $\left(p^{n} \right)^{J} \leq 1$ $\left(p^{n} \right)^{J} \leq 1$ · · · · · · · · $\frac{1}{2}$ MARKOV => with productility ZZ, G(r,p) has $\leq \frac{n}{2}$ cycles of length $\leq g$. Thinking about chromatic number.... a poper k-coloring of G pertitions its vertex set into K color classes (al) the untiles labeled with a particular color) and each of them is an independent set in Q. Next step: We will choose plarge enough that, prhably, max indep set of G Mas < $\frac{n}{\lambda k}$ vertices. n divisible Assume $E[\# indy rets of size \frac{1}{2k}]$ $\binom{n}{\gamma_{2k}} \cdot (1-p)^{\binom{n}{2k}} \frac{(\frac{n}{2k}-1)}{2k}$

 $< n^{t} \cdot e^{-pt(t-1)/2}$ $= \left[\frac{n}{e^{\rho(t-1)/2}}\right]^{t}$ Choose p to make $\frac{n}{e^{p(t-1)/2}} \leq \frac{1}{2}$ $2n \leq e^{p(H-i)/2}$ $\ln(2n) \leq f_{z}(t-1) = -\frac{p}{z} \cdot \left(\frac{n}{zk} - 1\right)$ $= \frac{p \cdot (n - 2k)}{4k}$ 1F n is ly enough Hat n'9>> 4/ln(2n) this inequalities are satisficible! $p \ge 1$ $4k \ln(2n)$ Summarizing: $\int f \frac{4k \ln(2n)}{n-2k} \leq p \leq \frac{1}{n} \cdot \left(\frac{n}{4g}\right)^{2g}$ mobalility 2 ½, G(n,p) has then with at most $\frac{n}{2}$ cycles of length $\leq g$. pullability 5 2 G(n,p) has Also with no intep sets of stize $\frac{n}{2k}$ or larger. With prob > O lasth of these happen. G = G with one vertex deleted From Then let each Sg yde. $|V(G_1)| \ge \frac{n}{2}$. G has no indep sets of size $\frac{n}{2k}$ $\rightarrow \chi(G_{,}) > k$.

· · · · · · · · · · ·	Gi has		cycle of	lensth	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
· · · · · · · · · · ·		$\mathcal{S}(\mathcal{C})$) > 9.	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · ·
				· · · · · · ·	
				· · · · · · ·	
· · · · · · · · · ·					· · · · · · · · · · ·
· · · · · · · · · · ·				· · · · · · ·	· · · · · · · · · · · ·
· · · · · · · · · · ·	· · · · · · · ·		· · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · ·
· · · · · · · · · · ·				· · · · · · ·	· · · · · · · · · · · ·
· · · · · · · · · · ·	· · · · · · · ·		· · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · ·
				· · · · · · ·	
· · · · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · ·
				· · · · · · ·	

	•	•	•	•	•	•	•	*	•	*	•	•		•	•	*	•			•		•	•	•		٠			•			*	•	•	*	•	•	•		•	*	•	٠	٠	•	*	•
	•	٠	٠	٠		•	٠	٠		٠	٠	•	٠	٠	٠		٠	٠			٠		•		٠	٠		٠	٠			٠		•	•	•	•	٠		•		·	٠	٠	•	•	
•	٠	٠	•	•	•		•	•	•	٠	•		•	•	•	٠	•	۰	٠		٠	•	٠	٠			٠	٠	٠			•	•		•	٠	٠	•	•	•	•	•		٠	٠	٠	•
٠	•	٠	•	•	•		٠	•	•	•	•		•	•	٠	*	•	٠	*		٠	٠	٠	*	•	•	•	٠	٠			•	•		•	•	•	•	•	•	•	•	٠	*	٠	•	•
٠	•			٠		٠	٠		•			٠		۰	•			•		•	•	•	•			•			٠					٠			•			•		*	•	•	•		•
	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	·		•	•					•	٠	•	•	•		٠		•	٠		•	•	٠	•	•		•	٠	•	٠	•		٠	•
•	•	•	•		•		٠	•	•	٠	٠	•	٠	•	٠	٠	٠	٠	•		٠	•	•	٠	٠	٠		•	•			•			•	٠	•	٠		•	•	٠	٠	•	•	•	•
	•			•		•	•	•	•		•	•	•	•	٠		٠	٠			٠		•			•		•	•			٠		•	•	•	٠	•		•		•	•	•	•	•	•
•	•	•	•	•	•		•	•		•			•		•	•	•	٠	•		٠	•	٠	٠	•	•	•	•	•			•			•	•	•	٠		•	•	•	•	•	•	•	•
٠	٠	٠	٠	•	•		٠	•	•	•			٠		٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠			•			•	•	٠	٠		•		٠	٠	٠	•	•	•
•	٠	0	•	٠	٠	٠	0	•	٠		٠	٠		٠	•		•	•		•	•	•	•	٠	٠	۰		٠	۰	٠	•	۰	•	٠		٠	•	0	•	•	٠	٠	0		٠		
•	٠	۰	•	٠	•	•	•	*	•	٠	*	•	•	•	٠	+	٠	•	•		٠	•	٠	*	•	٠		•	٠	•		*	•	•	*	•	•	•		•	*	٠	0	٠	٠	*	•
٠	٠		٠	٠	•	•	0	٠	٠		٠	٠		٠	•			•		•	•	٠	•		٠	٠		٠		٠	٠	٠	٠	•		٠	•	0	٠	•	٠	٠	0	٠	٠		•
•	٠	0	•	٠	•	٠	0	۰	•	٠	٠	٠		٠	•		•	•		•		•	•	٠	٠	۰		•	۰	٠	•	٠	•	•	•	٠	•		•	•	٠	٠	0	•	٠		•
•	•	٠	•	٠	•	•	٠	*	•		٠	•	٠	٠	•	•	•	٠	•		•	•	•	٠	٠	٠			٠	•	•		•	•	٠	٠	•	٠		•	*	٠	٠	٠		*	•
•	•		*	٠								٠			٠		*	٠	•	•		•	•	۰	•	٠		•	٠					٠		•	٠		•	•		٠			•		•
•	٠	۰	•	٠	•	•	•	٠	•	٠	٠	•		٠	•		•	•			•		•	•	٠	۰	٠	•	۰	•	•	٠	•	•	٠	٠	•	•	•	•	٠	٠	0	۰	•	٠	•
•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	٠	•	٠	٠	•		٠		•	٠	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	٠		•	٠	٠	٠	•	•	•	•