12 Mar 2025 Random Grophs Two (closely related) models. Both are proba distribus over graphs with vertices (for any pos. integer n). Gilbert (n,p): random graph where each Gilbert pair 14, v? is present in edge set independently with probability p. $P(G=(V,E)) = \begin{pmatrix} (2) \\ (3) \\ (m) \end{pmatrix}$ if #|E| = mD otherwise The Grobs Ranji models Evolving random network? $G_{o} \cap G_{i} \cap G_{2} \cap \cdots \cap G_{\binom{n}{2}}$ all have same n-element vertex set, V. Go = empty graph' G = G + one additional random edge. itil L different From the edges of Gi

 $(G_{\mathcal{A}}(\mathcal{A},\mathcal{A})) = (\mathcal{A})$ # of edges Expected ĺ,∩ Chernoff >> as soon as plarge ensigh that $p(\hat{z}) >> 1$ (actual # of edges in G(r,p)) $P^{(n)}\left(\frac{n}{2}\right)$ $1 - 2e^{-\frac{1}{3}2}p(2)$ probability > with How large must be to make with high G(n,p) connected p < 2nprotobility? $F(z) < (1-\varepsilon) (n-1)$ F(r,p) probably disconnected $\int f(r) = \int f(r) = \int$

Obs. IF not and G has an isolated vertex then G must be disconnected Expected # isdated vertices in G(n,p) # vertices A Pr(v is isolated) v -1 other Lerzie when is this KI? $|-p| < e^{-p}$ $\eta(1-p)^{n-1} < \eta e^{-(n-1)p}$ $p \ge \frac{\ln(n) + c}{n - 1}$ Pr (I isol vertex) < l (n-l)pJun Ln) ln(1/n) - c $\left(\left(\begin{array}{c} v \\ - \end{array} \right) \right) \right)$ $(n-l)_0$ · · · · · · · · · · ·

When is E[# isolated writes]>>]? Ans. when $n'(l-p)^{n-1} > 1$. Recall (-p > e^{-p-p} for 0<p<z. $5 + n e^{-(n-1)(p+p^2)} > 1$ E(* icolated vertices) 2>1. When $P = \frac{\ln(n) - c}{n - j}$ $p + p^{2} = p \left((1 + p^{2}) \right)$ $(h-l) \left(p + c^{2} \right) = (m-l) p \left(l + p^{2} \right)$ $= \left(\ln(n) - c \right) \left(1 + \frac{\ln(n) - c}{n - 1} \right)$ 1 ~ ~ (Some algebra. 1 ~ 1) Var (# isol, vertices). $X_{u} = \begin{cases} D & H \\ D & H \end{cases}$ isolated $\bigoplus [X_u] = (l-p)^{n-l},$ # tool vertices = $X = \sum_{u \in V} X_u$

 $E[X_{1}^{2}-(E_{1})^{2}]$ $\sum_{V} \sum_{v} \mathbb{E} \left[X_{u} X_{v} \right] - \mathbb{E} \left[X_{u} \right] \mathbb{E} \left[X_{v} \right]$ $(1 - p)^{n-1}$ $u = v_{,}$ $X_{u} X_{v} = X_{u} = X_{u}$ Vor(X) $= \mathbb{E}\left(X\right) - \mathbb{E}\left(X\right)^{L}$ = N'(l-p) + n(n-l)(l-p) $n \left(\left(-p \right)^{2n-2} \right)$ $= n(1-p)^{n-1} \left[\frac{1}{1+(n-1)(1-p)} - n(1-p)^{n-2} - n(1-p)^{n-1} \right]$ $= n \left(\left| -p \right\rangle^{n-1} \right) \left(1 + \left(n-1 \right) \left(\left| -p \right\rangle^{n-2} - n \left(\left| -p \right\rangle^{n-2} \right) \left(\left| -p \right\rangle^{n-2} \right) \right)$ $n(hp)^{-1}\left(1+(pn-1)(l-p)^{m-2}\right)$

 $\mathbb{E}(X)\left(1+(pn-1)((-p)^{n-2})\right)$ $V_{OV}(X) =$ Pr(no isolated vertice) $\leq \rho_{\mathcal{C}}(X - \mathbb{E}X) \geq \mathbb{E}X)$ $1 + (pn-1)(1-p)^{n-2}$ n'(1-p)^{n-3} ≤ 1 $(FX)^2$ =Set $p \leq \frac{lnn}{2n-2}$ do some algebra, $RHS \leq n^{-0.3}$ $p \leq \frac{1}{2}$ $\frac{\ln n}{n}$ TL, DR, => almost enrely

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· · ·	•	•	•	•	•	•	•	•	•	•	J jsol Vtx and (T(n,p)
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	· · ·	•	•	•	•		•	•	•	•		disconnected
•	•	•	•	•	•	•	•	Ţ				•		2+	·		1 1 1 1 1 1 1	· · · ·	- + -		C	· · · · · · · · · · · · · · · · · · ·				· · ·			ilmost surely vo soluted vertices? it connected?