3 Mar 2025 Misra-Gries and Count-Min Sketch Announcement: Quiz 4 is graded. Regrades until Sunday, PSet 3 to be released soon, (wed?) Due late next week (Threers/Fri) Recap. Finding frequent elements in a stream with false pritives allowed. MISRA-GRIES. An algorithm using O(k (b+logn)) bits of storage for any specified k. O(105 h + k) storage space b Ausumption. Stream consists of n elements of [9,1}. aurrentee. Outputs at most K elements of the stream. Every elements occurring 7 \tilde{k} +1 times will be reported among the output. Initialise array of K ordered pairs, each mitially (1,1). Algroithm $for \quad i = l_{1}, \ldots, n_{i}$ read Xi trum stream. if buffer contains ordered pair (xi, c) increament counter to (Xi,C+1) lif botter contains (1,1) replace with (xi, 1) eke

decrement every counter in butter. replace any $(\mathfrak{A}, \mathfrak{O})$ with (\bot, J) , K = 3 ~ J 1 Bobby Jon Éva 6 1 4 Évo Jon Babby Eshan Bobby L Éva 5 Va Bobby

• •	• • • •				 • • • •	
• •					 	
				Klhan	 	
• •					 	
		30167	Eshan tuch		 	
• •					 	
• •	· · · ·			· · · · · · · · · ·	 	
• •					 	
				-	 	

Analysis. We need to show, if X occurs more than $\frac{n}{K+1}$ that it will be pread in the biffer when the algo terminates. As the algorithm runs, the luffer keeps track of every elements that been grouped into it [k+1] - type of distinct elements. When the decrementing-counter peration is performed, a new group of k+l distinct elements is formed and accounted for. If X occors > in times in the stream, each group it k+1 distinct elements containe 51 apr of X. # groups $\leq \frac{n}{1 < +1}$ of X at least one copy never placed in one of the WER groups. the Liffer still contains X the algorithm's output contains X,

Data Straning meets data structures. A sketching algorithm runs in two stages. PREPROCESSING: Read a stream of data. Build a space efficient representation ("sketch") in memory. QUERY: Receive queries about the data and attempt to answer then with opproximately connect answers. Sketching element frequencies. 40,176 For data stream <u>X</u> = X1, X2/11, Xn the frequency vector F has coordinates indexed by elements of {0,13} f[x] = # of time X occurs in the stream. given Xieho,13° return f[x]. Frequency query: Lossless representations of the stream: n.6 bits $\begin{array}{ccc} 1 & \chi_{1, -} & -, \chi_{n} \\ \hline 2 & \overrightarrow{F} \end{array}$ 2° lag(n) bits

We are interested in lossy representations that use poly (b, log n, E, log(s)) bits and enable $(\epsilon, S) - PAC$ answers to frequency quertes. Plan: Use hashing! With a single hash function h: {0,130-1 [B] we could store a different frequency vector $q \in \mathbb{N}^{B}$ $g[b] = \# \{i \mid h(x_i) = b\},$ Properties of gi $-g[h(x)] \ge f[x].$ (could be strictly greates due

to hash collisions)	
	•
-	•
- Slace, requirement) for comparing	
· · · · · · · · · · · · · · · · · · ·	
s = s = s = s = s = s = s = s = s = s =	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
• Street of the the the the the the	
$\left(\left b' \right \right \left b' \right \right = \left b' \right \left b' \right \right $	
$ \begin{array}{c} \cdot \cdot$	
	Ť

IF, elements require log(B) bits En For a BS p S 2B Joner product hashing with b-din vectors uses 611 coefficients in \$p stading) Hself. 96 201,...,n2B (B. (logn)) bits Lemma. If h is sampled randomly Fran a Z-universed hash tamily $\forall x \quad \Pr\left(g[h(a)] - F[x] > \frac{\alpha n}{B}\right) < \frac{1}{2}.$ Prot. g[h[M] - F[x] counts $\exists \{i \mid X_i \neq X \quad \text{but} \quad h(x_i) = h[x] \}.$ $\mathbb{E}\left\{ \exists \left\{ i \right\} \times_{i} \neq \chi \quad \text{but} \quad h(x_{i}) \neq \chi \right\}$ $= \sum_{i=1}^{\infty} P(x_i \neq x_i \text{ but } h(x_i) = h(x))$

 \leq (Markov) $\Pr\left(g(h[x]) - F[x] > \frac{2n}{B}\right) \leq \frac{1}{2}$ A vanden sampling of M. $B = \begin{bmatrix} \frac{2}{2} \\ \frac{2}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1$ We will ser $\frac{\partial n}{\beta} \leqslant en$ Then we have an $(\epsilon, \delta) - PAC$ algorithm with $S = \frac{1}{2}$ (bad!) and E arbitrarily close to 0 (god!) and space complexity (good!) $O(b, log(\frac{1}{\epsilon}) + \frac{1}{\epsilon}, log(n))$ losts.

count-min sketch. Use t=log(5) hash functions instead of one Sample Losh Finctions Independently a 2-universa family. Trov

structure encodes : Data hash functions his--, ht $O(b \cdot t \cdot log b)$ bits 2-D array of Counters, $G[b_j] = #Zi | h_j(x_j) = GZ$ O(Bt-logn) bits Preprocessing Juitely cample hi, --, ht Initialize G(b,j) = 0 $\forall b,j$ for it=1, ___, ni for こし、こうし · · • · $b = h_1(x_1)$ Compute GLbjj increment Return min G[h(x), j]. Query (x): YXEQ136 Yje[t] Ove-sided error. $G[L(x), j] \ge f[x].$

 $\# \sum_{i}^{n} h_{j}(x_{i}) = h_{j}(x) \sum_{i}^{n}$ \geq # $\xi_i = \chi \xi_i$ Query(x) returns a Fact 1. Z F[X], Value Fact 2, $\forall x Pr(Query(x) - f(x) > \frac{2n}{B}) < \lambda^{-1}$. $B = \begin{bmatrix} 2 \\ \overline{\epsilon} \end{bmatrix}$ 50 $\frac{2n}{B} \leq \epsilon n$, We chose $-\frac{1}{2} = \log(\frac{1}{5}) \quad s_{2} \quad z_{1}^{-t} = \delta_{1}$ Translation. V7 Pr (Query (4) - F[x]>EN) < f $(\varepsilon, \delta) - PAC$, (GOOD!) Space requirement. $\left(b \cdot lug(\xi) \cdot lug(\xi) + \right)$ $b_{3}\left(\frac{1}{5}\right) \cdot b_{3}n$ (900)