3 Feb 2025 The Chernott Bound Announcements. D Quiz 1 grades on Gradescope, Ragrades until Sunday. 2) PSet 1 on Canvas. Turn in on Gradescepe. Deadline Twos 2/11. Late deadline moons on 2/13. Q. When is the earliest m(n) sit. with probability at least 1/2, Max Occupancy < Ite? Method. Toil bounds and union bounds Look out occupancy on one bin, **L**. j in icolortion. E(# balls in bin i] = M If MSSN the "law of large numbers (don't worry door what that is) says actual # Galls in Give i is very unlikely to be for from its exp. val. Look for S>O such that Good News!S = E/3 Works. $\frac{(1+s)m/n}{(1-s)m/n} \leq 1+\varepsilon,$ Now focus on showing that with pass 7/2, every bin's occupancy, Li, satisfies

 \mathcal{Y}_{i}^{i} $(1-\delta)\frac{m}{n} \leq L_{i} \leq (1+\delta)\frac{m}{n}$. Then it'll follow that $(l-s)\frac{m}{n} \leq \min occ. \leq \max occ. \leq (l+s)\frac{m}{n}$ So $\frac{max}{min} \int \frac{1+s}{1-s} \leq 1+\varepsilon \quad by \ cloce \ sf \ \delta,$ Now, search for M large enough to justify (TB) Vi $Pr(1|L_i - \frac{m}{n}| > \frac{\delta m}{n}) \leq \frac{1}{2n}$ $Pr(L_i)$ To firsh up, use the union bound (UB) $Pr(\mathcal{E}, \mathcal{U}\mathcal{E}, \mathcal{U}\mathcal{E}, \mathcal{U}\mathcal{E}) \leq \sum_{j=1}^{N} Pr(\mathcal{E})$ With $E_{1,5}$ denoting the event $\int |L_i - \frac{m}{n}| > \frac{\delta m}{n} \rho$ $(TB) + (UB) \implies Pr(Ji \in S) \leq \sum_{i=1}^{n} Pr(\xi_{i,j}) \leq n \cdot (\frac{1}{2n}) = \frac{1}{2}$ $S_{0}, P(\forall i \overline{\xi_{i,\delta}}) \geqslant \frac{1}{2}.$ m need large des hold? (B) Chebyshev $O(n(log n)/e^2)$ hernoff

Recall. Chebysher says a random variable is unlikely to be far From its expectation its variance is small. $\int_{\mathcal{C}} \left(\left| \chi - \mathbb{E}[\chi] \right| \ge \chi \right) \le \frac{V_{ar}(\chi)}{\chi^2}$ For occupancy of him b, Li, it is a sum of m independent Bernoulli random vars (10,13-valued) each with expected ratine in. For a Bernoulli Y with egp val $\mathbb{E}\left[\left(\frac{1}{2}\right)^{2}\right]^{2} = \mathbb{E}\left[\left(\frac{1}{2}\right)^{2}\right]^{2} = \mathbb{E}$ $\operatorname{Vor}(Y) = \operatorname{E}[Y^2] - (\operatorname{E}[Y])^2 = \rho - \rho^2 = \rho(-\rho).$ $V_{av}(L_{i}) = m \cdot V_{av}(\chi)$ where Y is Bernoulli (1) $= m \cdot \frac{1}{n} \cdot \left(\left(- \frac{1}{n} \right) \right) < \frac{m}{n}$

Var (Li) $\left(\delta_{m}/\kappa\right)^{2}$ $\leq \frac{m/n}{\delta^2 \cdot (m/n)^2}$ $= \frac{m}{5^2 m} = \frac{q_n}{\epsilon m},$ Remamber: We were trying to choose m large enough that this probability $\frac{1}{15}$ $\frac{1}{2n}$ $M \ge \frac{18n^2}{\epsilon^2}$ $\frac{9n}{52m} \leq \frac{9n}{18n}$ $\frac{1}{2n}$ The Moment Generating Function If X is a random variable generating tunction $) = E e t x^{-1}$ $M_{\chi}(t)$

The cumulant generating function is $K_{\chi}(H) = ln M_{\chi}(H)$ Lemma, JF X, ____ XN are independent random variables and $X = X_1 + \dots + X_N$ then $\sum_{i=1}^{N} K_{Xi}(4)$ $K = K = K \times (++) \times (+) \times$... when the LHS and RHS are finite. $M_{\chi}(t) = \mathbb{E}\left[e^{t\chi}\right]$ t e $\begin{bmatrix} \mathbf{T} \\ \mathbf{T} \\ \mathbf{T} \end{bmatrix} = \mathbf{T} \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \end{bmatrix}$ $= \prod_{i=1}^{n} M_{X_i}(H)$

Taking lu(') of both sides, $K_{\chi}(\mathcal{H}) = \sum_{i=1}^{N} K_{\chi_{i}}(\mathcal{H})$ mutually Lemma JF ZI - ZN A independent then $\mathbb{E}\left(\begin{array}{c} N\\ T\\ T\\ T\end{array}\right) = \begin{array}{c} N\\ T\\ T\\ T\end{array} \\ \mathbb{E}\left(\begin{array}{c} V\\ T\\ T\end{array}\right)$ PF. Jf Y, ____YN are independent $\mathbb{E}\left[\underbrace{\mathcal{H}}_{i} \times \left\{ \right\} = \sum_{\substack{i=1 \\ j \neq i}} \Pr\left(\forall i \; \forall i \; \forall i \neq j \right) \cdot \left(\underbrace{\mathcal{H}}_{i=1} \times \left\{ \right\} \right) \right]$ $= \sum_{j \in I} \frac{N}{1} P_{i}(\gamma_{j} = \gamma_{j}) \frac{N}{1} Y_{j}$ $= \sum_{i=1}^{N} \prod_{j=1}^{N} \left(\Pr(Y_{i} = y_{j}), y_{j} \right)$ $\frac{1}{1} \frac{1}{12} = \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} \frac{1}{12}$

•	• • • •	•	· · ·	•	•	•	• • •	•	• · ·	· · · · · · · · · · · · · · · · · · ·		ן 				•		4	•••••••••••••••••••••••••••••••••••••••	•	•				(r r r	,	ل ل	Ly J) }			, , ,			•	•	•	•	•	•	•	•
•	•	•	• •	•	•	•	•	•	•	• •	Ň	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•
•	•	•	• •	•	•	•	Ļ		•			\ \ \	•		Ă	-	-		 	ſ		•	•	•	•		• •	•	•	•		•		• •		•		•	•	•	•	•	•
•	•	•	••••	•	•	•	•	•	• •			, =j	•	•	U		ſ	l	.		7	•	•	•	•	•	••••	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•
•	•	•	• •	°7	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	• •	•		•	•	•	•	• •		•	•	•	•	•	•	0	•
•	•	•		•	•	•	•		• •		•	•	•	•	•	•		•	•		•	•	•	•	•	•		•	•	•	•	•		• •			•	•	•	•	•		•
•	•	•		•		•	•	•	• •		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	• •		•	•		•		•	•	•
	٠												٠													•				٠								٠	٠				

The Chernott Bound, JF X, X2, ___, XN are mutually independent vanden variablee taking values in [0,1] and X=X1+...+XN $Hen \qquad \forall \qquad 0 \leq \varepsilon \leq 1$ $P_{\ell}(X > (1+\varepsilon) \mathbb{E}(X)) < e^{-\frac{1}{3}\varepsilon^{2}} \mathbb{E}(X)$ $P_r(X \leq (1 - \varepsilon) \mathbb{E}[x]) \leq e^{-\frac{1}{2}\varepsilon} \mathbb{E}[x]$

	•	•	•	•	•	•	•	*	•	*	•	•		•	•	*	•			•		•	٠	•		٠	•		•			*	•	•	*	•	•	•		•	*	•	٠	٠	•	*	•
	•	٠	٠	٠		•	٠	٠		٠	٠	•	٠	٠	٠		٠	٠			٠		•		٠	٠		٠	٠			٠		•	•	•	•	٠		•		·	٠	٠	•	•	
•	٠	٠	•	•	•		•	•	•	٠	•		•		•	٠	•	۰	٠		٠	•	٠	٠			٠	٠	٠			•	•		•	٠	٠	•	•	•	•	•		٠	٠	٠	•
٠	•	٠	•	•	•		٠	•	•	•	•		•	•	٠	*	•	٠	*		٠	٠	٠	*	•	•	•	٠	٠			•	•		•	•	•	•	•	•	•	•	٠	*	٠	•	•
٠	•			٠		٠	٠		•			٠		۰	•			•		•	•		•			•			٠					٠			•			•		*	٠	•	•		•
	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	·		•	•					•	٠	•	•	•		٠		•	٠		•	•	٠	•	•		•	٠	•	٠	•		٠	•
•	•	•	•		•		٠	٠	•	٠	•	•	٠	•	٠	٠	٠	٠	•		٠	•	•	٠	٠	٠		•	•			•			•	٠	•	٠		•	•	٠	٠	•	•	•	•
	•			•		•	•	•	•		•	•	•	•	٠		٠	٠			٠		•			•		•	•			٠		•	•	•	٠	•		•		•	•	•	•	•	•
•	•	•	•	•	•		•	•		•			•		•	•	•	٠	•		٠	•	٠	٠	•	•	•	•	•			•			•	•	•	٠		•	•	•	•	•	•	•	•
٠	٠	٠	٠	•	•		٠	•	•	•			٠		٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠			•			•	•	٠	٠		•		٠	٠	٠	•	•	•
•	٠	0	•	٠	٠	٠	0	•	٠		٠	٠		٠	•		•	•		•	•	•	•	٠	٠	۰		٠	۰	٠	•	۰	•	٠		٠	•	0	•	•	٠	٠	0		٠		
•	٠	۰	•	٠	•	•	•	*	•	٠	*	•	•	•	٠	+	٠	•	•		٠	•	٠	*	•	٠		•	٠	•		*	•	•	٠	•	•	•		•	*	٠	0	٠	٠	*	•
٠	٠		٠	٠	•	٠	0	٠	٠		٠	٠		٠	•			•		•	•	٠	•		٠	٠		٠		٠	٠	٠	٠	•		٠	•	0	٠	•	٠	٠	0	٠	٠		•
•	٠	0	•	٠	•	٠	0	٠	•	٠	٠	٠		٠	•		•	•		•		•	•	٠	٠	۰		•	۰	٠	•	٠	•	•	•	٠	•		•	•	٠	٠	0	•	٠		•
•	•	٠	•	٠	•	•	٠	*	•		٠	•	٠	٠	•	•	•	٠	•		•	•	•	٠	٠	٠			٠	•	•		•	•	*	٠	•	٠		•	*	٠	٠	٠		*	•
•	•		*	٠								٠			٠		*	٠	•	•		•	•	۰	•	٠		•	٠					٠		•	٠		•	•		٠			•		•
	٠	۰	•	٠	•	•	•	٠	•	٠	٠	•		٠	•		•	•			•		•	•	٠	۰		•	۰	•	•	٠	•	•	٠	٠	•	•	•	•	٠	٠	0	۰	•	٠	•
•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	٠	•	٠	٠	•		٠		•	٠	٠	٠	٠	٠	•	•	•	٠	•	•	•	•	•	٠		•	٠	٠	٠	•	•	•	•