27 Jan 2025 The Birthday Paradox "Balls and bins" problems involve a sequence of random samples X1,X2,...,Xm each drawn uniformly at random Two viewpoints: - Simultaneous: X1, , Xin Sampled all at unce. - sequential: picture requence X1, generated one element at a time. Ask questions about the bandom) time when some property is achieved. Occupancy vector: N-dimensional vector counting # Gally in each bin. \mathcal{E}_{-g} $(X_1, X_2, \dots, X_8) = (2, 1, 3, 3, 1, 1, 3, 2)$ occupancy vector [3] Questions. Birthday paradex: when does occupancy vector leave the set \$ 0,127? (First time we have a bin with 2 or more balls in H.) (Never later than m=n+1, prolably much earlier.)

- Coupon collector: when does min (occupancy) erced Ø? Load balancing: when does mon(occupancy) be come less than Ite? Fact. The collision probability for m bells in n bisns, i.e. $lr(\exists i \neq j \text{ st. } X_i = X_j)$, can be calculated as follows. Pr(collision) = 1 - Pr(no collision) $= 1 - \prod_{j=1}^{m} \Pr(X_j \text{ is not equal to any } X_i | X_{1, \dots, X_{j-1}})$ sit. $i \times j$ all distinct (substitute K=J-1) $1 - \frac{m-1}{TT} \left(1 - \frac{k}{s} \right)$ The nost useful inequality in the analysis

•	•	•	•	•	01	•	•	ve	· ·	ler	M	, ₹	r P	ل ملح م	• •	•	al	EJ?	<i>.</i>	ήL	م م م			•	•	•	• •	••••	•	• •		• •	•	••••	•	•	•	• •
•		•	•	•	•	•	•	•	 	¥	ر الح الح	E [R	 	• •	•			•	•	•	1	 . + .	X) [*] .	ন ব	• •	بلا بلا م م	<u>1</u>		expl	(• •	•	•		•••
0	•	•	•	•	•	•	•	• •	• •	[<u> </u> +	tre	•	· (12	مر		1:1	7	•	ູ້ ເ	• •	st	۲Ì۲	A	•	مالى	nless	•	° √×	-0			••••	•	•	•	• •
•	•	•	•	•	•	•	•	•	• •	•			•				•	•	•	•		• •	• •	•	•	•		e	,X.	· ·		 /	·	• •	•	•	•	• •
•	•	•	•	•	•	•	•	• •	· · ·		•	•	•	• •	• •	•	•	•	•	•	•	• •	· · ·	•	•	•	• •	••••	•	• •			y	دا	+χ.	را. کار	•	• •
•	•	•	•	•	•	•	•	•	• •	•	•		•	• •	•	•	•	•	•	•	•	• •	• •	•	÷	•	• •	e	=	-	-	• •	th. =	C =	tan at	·sen	+	· ·
•	•	•	•	•	•	•	•	• •	••••		•	•	•	• •	• •	•	•	•	•	•	•	• •	· ·	•	•	•	· · · ·		×	. =ບ	 	• •				ر . ر :		

$ = \frac{1}{n} - \frac{k}{n} < e^{-k/n} $
$\frac{m - l}{TT} \left(1 - \frac{k}{n} \right) \leq \frac{m - l}{TT} - \frac{k}{n} = \exp\left(-\frac{m - l}{2} \frac{k}{n}\right)$ $k = l k \geq l$
$= c_{XY} \left(- \frac{m(n-i)}{2n} \right)$
To make Pr(clitsion) > 1/2 we want
$Pr(n \text{ collision}) < \frac{1}{2}$, and we've shown
$Pr(n \ collision) \leq exp(-\frac{m(n-l)}{2n})$ $r \ choose smalles in that makes this \leq \frac{1}{2}.$
$\exp\left(-\frac{m(m-1)}{Z_{m}}\right) \leq \frac{1}{Z}$
$\exp\left(-\frac{m(m-1)}{2n}\right) \geq 2$
$\frac{m(m-1)}{Zn} \geq ln(2)$
$\tilde{m} - m \geqslant 2n \ln(2)$.
$m^2 - m + \frac{1}{4} = 2n \ln(2) + \frac{1}{4}$ tight within

(1)additive m-1/2 J2n ln(2) + 1/4 **7**/1 + $\frac{1}{2}$ > Jan ln(2) + 1/4 $O(U_n)$ n 🔍 n n=365 to) ~≥ 22.999914 Plug set you 1

We have estimated $Pr(collision) > 1 - exp(-\frac{m(m-i)}{2n})$. How close is RHS to the probability?
$\frac{227}{5} < \sqrt{-\frac{k}{n}} < \frac{-\frac{k}{n}}{5}$
Fact. For $0 < \chi < \frac{1}{2}$, $1 - \chi > e^{-\chi - \chi^2}$ Proof. $\ln(1 - \chi) = -\sum_{i=1}^{\infty} \frac{\chi^i}{i} = -\chi - \frac{\chi^2}{2} - \frac{\chi^3}{2} - \frac{\chi^4}{4}$.
$= -x - \frac{1}{2}x^{2} \left(1 + x + x^{2} + x^{2} + \dots\right)$ $= -x - \frac{x^{2}}{2(1-x)} > -x - x^{2}$ Exponentiate Loth sides $\Rightarrow 1 - x > e^{-x - x^{2}}$
$exp(-\frac{k}{n}-\frac{k^2}{n^2}) < \left[-\frac{k}{n} < e^{-k/n}\right]$
$5o \Pr(no collision) > \prod_{k=1}^{m-1} \exp\left(-\frac{k}{2} - \frac{k^2}{n^2}\right)$ $= \exp\left(-\sum_{n=1}^{m-1} \frac{k}{n} - \sum_{n=1}^{m-1} \frac{k^2}{2}\right)$

KEINEN $exp\left(-\frac{m(m-1)}{Zn}-\frac{m(m-1)(Zm-1)}{6n^2}\right)$ and liner boundo differ by Upper $\frac{m(m-1)(2m-1)}{6m^2}$ we chose $m \approx \sqrt{2n \ln(2)}$, $\frac{m(m-1)}{2n} \approx \ln(2)$ Recall

 $C_{XP}\left(-\frac{m(m-i)(2m-i)}{2n}\right) \approx e_{XP}\left(-\frac{(2m-i)}{3n}\ln(2)\right)$ $\approx \exp\left(-\frac{2\sqrt{2n\ln 2}\cdot \ln 2}{3n}\right)$ $= \exp\left(-\frac{(2\ln 2)^{3/2}}{3}\right)$ $> exp\left(-\frac{1}{\sqrt{n}}\right) > \left|-\frac{1}{\sqrt{n}}\right|$ $\left(1-\frac{1}{\sqrt{n}}\right)\exp\left(-\frac{m(m-1)}{2n}\right) < \Pr\left(n > \text{ collision}\right) < \exp\left(-\frac{m(m-1)}{2n}\right)$ APPLICATION 4. Crytography Cryptographic Mash functions are functions h(x) that are: (1) Easy to compute, deterministic parameter. (2) Output values in {0,13k 3 Relieved to be computationally hard to find $X_0 \neq X_1$, with $h(x_{n}) = h(x_{1}).$ Often modeled as if h(x,), h(x), h(xm) for any fixed m-typle of inputs X.... Xm are computationally indistinguishable from indep. random unit sampler from 80,13^k.

Malep rendem samples, If they try were then h(x,), ____, h(x_n) would be w balls throw rondomly into n=2^k bins. The "birthday attack" - hashing h(x,) for independent kindom X., _, X.n with a collision occurs - tokes $\approx \sqrt{2n} = 2^{(1+1)/2}$ trials to succeed. Crypto hach functions considered secure if wobody knows how to find collision using $T = 2^{\frac{K+4}{2}}$ tries. E.g. SHA-1 has 160-sit output. $k = 160, \qquad \frac{k+1}{2} \approx 50$ Xiroyun Weng + collaborators: Found Callision using 2⁶³ trials, more than 10⁵ Easter than vendom gressing. SthA-2 is now standard, uses K ranging τ 5(2,