Chapter 2.
High Dimensional space



Gadgets for Proving:
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Theorem 2.1 (Markov’s inequality) Let = be a nonnegative random variable. Then
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Theorem 2.3 (Chebyshev’s inequality) Let = be a random variable. Then for ¢ > 0,
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Statistical facts about expectation, variance etc.




Important Geometry Conclusions about High Dim Space

e Most volume is near surface
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Most of the volume of the d-dim ball of radius r is contained in an annulus of width O(r/d) near surface

e Surface area and volume of a unit sphere in d:
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e Volume of sphere is near equator

Theorem 2.7 Forc> 1 and d > 3, at least a 1 — %8_62/2 fraction of the volume of the
d-dimensional unit ball has |z.1| < .
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Prove by showing the ratio of volume of half equator over volume of hemisphere goes to one in limit or the
other way around.



Important Geometry Conclusions about High Dim Space

o Nearly all points in a unit sphere are in a box of side-length O (:4)
Vd

Nearly all the volume

<— Vertex of hypercube



Generat points uniformly at random on surface of unit sphere

1. For a point Generate x1, x2, . . ., xd independently using a zero mean, unit
variance Gaussian distribution.

This gives a probabiliy density that is spherically symmetric.

2. Normalize the vector x=<x1, x2, ...., xd> so that the point is on surface of unit
sphere. (coordinates no longer independent)

To generate points uniformly at random over a unit sphere:

Introduce scale factor Jrd—1



Gaussians in High Dim

e Two random points from a d-dimensional Gaussian with unit variance in each
direction are approximately orthogonal. It implies: for the normalized random

points, if we pick one as north pole, then all the others will lie on the equator
of the unit sphere.

e Gaussian Annulus Theorem

Theorem 2.9 (Gaussian Annulus Theorem) For a d-dimensional spherical Gaussian
- i . . : . 2
with unit variance in each direction, for any 5 < V/d, all but at most 3¢~ of the prob-

ability mass lies within the annulus Vd — 8 < x| < Vd+ B, where ¢ is a fized positive
constant.



Random Projection

The projection f : R? — RF that we will examine (in fact, many related projections
are known to work as well) is the following. Pick k Gaussian vectors u;, us, ..., uy in R?
with unit-variance coordinates. For any vector v, define the projection f(v) by:

f(v)=(a1-v,ug-v,...,ux-v).

WIth high probabiliy, |f(v)| =~ vk|v|

Random projection preserves all relative pairwise distances between points in a
set of n points with high probability

Theorem 2 11 (Johnson-Lindenstrauss Lemma) For any 0 < £ < 1 and any integer
n, let k > 2;Inn for ¢ as in Theorem 2.9. For any set of n points in R%, the random

projection f Rd — R* defined above has the property that for all pairs of points v; and
vj, with probability at least 1 — 1.5/n,

(1 —e)Vk|vi—v;| < |f(vi) = F(v5)] < 1 +e)VEk|vi — vy



Separating Gaussians

Algorithm for separating points from two Gaussians: Calculate all
pairwise distances between points. The cluster of smallest pairwise distances
must come from a single Gaussian. Remove these points. The remaining
points come from the second Gaussian.



