Hitting Time

Definition: Hitting Time, huv is the expected time in a random walk to reach vertex v starting from vertex u.

Consider a graph without any cycles between u and v and n edges between them as shown in the figure below.

Hitting time, huv for the above situation $=\mathrm{O}\left(\mathrm{n}^{2}\right)$
Now we add some edges from vertex v in order to insert a clique of size $\mathrm{n} / 2$.This is shown in the figure below.

The vertex v has degree $n / 2-1$ (v itself is an edge of the clique). Suppose we start a random walk from v to u, there is a high probability that the clique is entered .Once this happens, it is going to take at an average $O(n)$ steps to get out of the clique.

Hence, the hitting time, $h_{v u}$ for the above situation $=O\left(n^{3}\right)$
However, in above figure, the hitting time is not symmetric.
Hitting time, huv for the above situation $=O\left(n^{2}\right)$

What is the maximum possible hitting time in a graph of n vertices?

Lemma: If u and v are connected by an edge then hitting time, huv $+h_{v u} \leq 2 \mathrm{~m}$ where m is the number of edges in the graph.

Proof: Since the probability of traversing any edge is equally likely, the probability of traversing an edge in any direction is $1 / 2 \mathrm{~m}$.

Therefore, it follows that the time between traversals of an edge is 2 m . This is illustrated in the diagram below.

Expected Path Length $=2 \mathrm{~m}$
Given that the random walk in the above diagram traversed the edge uv, the expected time until next traversal of edge uv is 2 m . Since random walks are memoryless, we can drop the condition. I.e. the path taken by the random walk could have entered u and gone to v multiple times (via different edges) before actually taking the edge uv. This situation is shown below.

$$
\text { Expected Path Length }=2 \mathrm{~m}
$$

Since the total path length is expected to be 2 m , the path may go to u and come back to v in less than 2 m steps. Hence it is proved that huv+ $\mathrm{h}_{\mathrm{vu}} \leq 2 \mathrm{~m}$

What happens if there was no edge between u and $v ?$

There is a path from u to v such that path length $\leq n$.From the previous lemma, it takes 2 m steps for the traversal of the same edge. Hence hitting time, $h_{u v} \leq 2 m n \leq n^{3}$

Commute Time

Definition: Commute $(u, v)=$ expected time starting at u to reach v and then return to u.
Theorem: Consider undirected graph with each edge replaced by one ohm resistor,

$$
\operatorname{Commute}(\mathrm{u}, \mathrm{v})=2 \mathrm{mr}_{\mathrm{u}, \mathrm{v}}
$$

where $\mathrm{m}=$ \# edges, $\mathrm{r}_{\mathrm{u}, \mathrm{v}}=$ effective resistance between u and v .

Proof

Insert current at every node of value equal to the degree of the node, extract current at v .

$$
\text { current extracted at } v=\sum_{i} d(i)=2 m
$$

Look at voltages relative to node $\mathrm{v}, \mathrm{V}_{\mathrm{uv}}$.
Because of current conservation,

$$
\begin{aligned}
\mathrm{d}(\mathrm{u}) & =\sum_{\mathrm{k} \text { adj. to } \mathrm{u}}\left(\mathrm{~V}_{\mathrm{uk}}-\mathrm{V}_{\mathrm{kv}}\right)=\sum_{\mathrm{k}} \mathrm{~V}_{\mathrm{uk}}-\sum_{\mathrm{k}} \mathrm{~V}_{\mathrm{kv}} \\
& =\mathrm{V}_{\mathrm{uk}} \mathrm{~d}(\mathrm{u})-\sum_{\mathrm{k}} \mathrm{~V}_{\mathrm{kv}}
\end{aligned}
$$

Solve the above equation for V_{uv}

$$
\begin{aligned}
\mathrm{V}_{\mathrm{uv}} & =\frac{1}{\mathrm{~d}(\mathrm{u})}\left(\mathrm{d}(\mathrm{u})+\sum_{\mathrm{k}} \mathrm{~V}_{\mathrm{kv}}\right) \\
& =\frac{1}{\mathrm{~d}(\mathrm{u})} \sum_{\mathrm{k}}\left(1+\mathrm{V}_{\mathrm{kv}}\right)
\end{aligned}
$$

Recall the hitting time of u and v
$\mathrm{h}_{\mathrm{uv}}=\frac{1}{\mathrm{~d}(\mathrm{u})} \sum_{\mathrm{k}}\left(1+\mathrm{h}_{\mathrm{kv}}\right)$
We get $\mathrm{v}_{\mathrm{uv}}=\mathrm{h}_{\mathrm{uv}}$ (1) when current extracted at v .
By symmetry, when we extract current at u, we will get
$\overline{V_{v u}}=h_{v u}$

Then in the above case, when we reverse all current such that we insert current at u , and extract current at every node, we will get

$$
\begin{align*}
& \overline{\overline{V_{\mathrm{vu}}}}=-\overline{{V_{\mathrm{vu}}}^{V_{\mathrm{vv}}}}=-h_{\mathrm{vu}} \\
& \overline{\overline{\mathrm{~V}_{\mathrm{V}}}}=h_{\mathrm{vu}} \tag{2}
\end{align*}
$$

By superposition of current in (1) and (2), we get

$$
\mathrm{V}_{\mathrm{uv}}+\overline{\overline{\mathrm{V}_{\mathrm{uv}}}}=\mathrm{h}_{\mathrm{uv}}+\mathrm{h}_{\mathrm{vu}}
$$

The LHS of the above equation is the resulted voltage of u relative to v in the superposed network, where current of value 2 m enter the network at node u, and flows out at node v , so
$\operatorname{Commute}(u, v)=h_{u v}+h_{v u}=$ voltage $=c u r r e n t *$ resistance $=2 \mathrm{mr}_{\mathrm{uv}}$

Corollary: For any vertices u and v in an connected n-vertex graph,

$$
\text { Commute }(\mathrm{u}, \mathrm{v})<\mathrm{n}^{3}
$$

Proof

Since graph connected, there exists a path from u to v, and the path is of length at most n.

Then the resistance of this path is less than n, which means the effective resistance between u and v is less than n. By our theorem, Commute $(\mathrm{u}, \mathrm{v})=2 \mathrm{mr}_{\mathrm{u}, \mathrm{v}}<2 \mathrm{mn} \leq 2 \mathrm{C}(\mathrm{n}, 2) \mathrm{n}<\mathrm{n}^{3}$.

