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A Review on Probability Distributions:
1) Binomial Distribution:
The Binomial distribution models the probability of k successes in n independent trials, with success in each trial having probability p.

Pr(k successes) = C(n,k) pk(1-p)n-k (we want exactly k successes, and the rest fail)

Deriving the formula for expected value (E[k]) and variance (s2) of a Binomial distribution:

E[k] = k*Prob(k) for all values of k = Sk=0~n k*C(n,k) pk(1-p)n-k
To simplify, consider (p+q)n = Sk=0~n C(n,k)pkqn-k. Taking derivative of both sides w.r.t “p”, we get:

n(p+q)n-1= (1/p) Sk=0~n k*C(n,k) pk(1-p)n-k = (1/p)*E[k]
now if we set q=1-p, then (p+1-p)n-1=1, so the LHS becomes just n, and we have:

n=(1/p)E[k]=> E[k]= np

Now, to get the variance, we take the second derivative of the equation 

(p+q)n = Sk=0~n C(n,k)pkqn-k:

n(n-1)(p+q)n-2 = Sk=0~nk(k-1) C(n,k) pk-2qn-k   sub in q=1-p, and multiply both sides by p2, we get

p2n(n-1) = Sk=0~nk(k-1) C(n,k) pkqn-k  Factor out the right hand side with k2 and -k, we have
p2n(n-1) = Sk=0~nk2C(n,k) pkqn-k  - Sk=0~nkC(n,k) pkqn-k   We realize that the first term of the RHS is E[k2] , and the second term is E[k] = np, moving the second term on the right to the left, we receive:

E[k2]= p2n(n-1)+np

Now we also note that s2=E[(k - E[k])2]=E[k2 - 2E[k]k + E[k]2] = E[k2] – 2E[k]E[k]+E[k]2
=E[k2] - E[k]2 so now we can substitute in all of our results for E[k2] and E[k]:

s2 = p2n(n-1)+np – (np)2 = p2n2 - p2n + np - n2p2 = - p2n + np = np(1-p) Which was the formula suggested at the previous lecture.
2) Poisson Distribution:
The Poisson distribution describes the probability of k events happening in a unit of time if the average rate per unit of time is λ. An example is, given the number of cars per hour that arrive at a toll booth on the New York State Thruway, using the Poisson to find the probability of k cars arriving in a time period.

Divide the unit of time into n segments, each of which is sufficiently small such that the probability of two events occurring in the segment is negligible.

This distribution can be derived from the binomial distribution by letting n → ∞.

p = λ/n = (avg. rate) / (no. units into which interval is divided)

probability(k successes) = limn→∞ C(n, k) (λ/n)k(1–λ/n)n–k 
(for big n, (n)(n–1)…(n–k+1) ≈ nk)


≈ (nk/k!)(λk/nk)(1–λ/n)n(1–λ/n)–k
 
(last two terms approx. 1)


= (λk/k!)e-λ
This drops to 0 quickly—therefore, the approximation will only hold for small values of k.
Directed Graphs:
G(n, p) is an undirected graph. But what about directed graphs?
In an undirected graph, a connected component is all vertices one can reach from a given vertex. In a directed graph, a strongly connected component has paths such that if there is a path from A to B, there must also be a path from B to A.
Real life Example: 

At one time, there were about 200 million pages on the Internet. About 50 million were strongly connected. Another 50 million had edges going into this component, and another 50 million had edges going to them from this strongly connected component. The final 50 million were smaller components, etc.

We have three models:

1. G(n, p): flip a coin, undirected edge

2. Ghat (n, p): if heads, put two directed edges (this is G(n, p) with every undirected edge replaced with two directed edges)

3. D(n, p): flip a coin twice for each pair of vertices: first time for edge one way, second time for edge the other way

Lemma: The following three random variables are identically distributed.

1. The number of vertices of the component of G(n, p) containing vertex 1.
2. The number of vertices in the directed version of G(n, p) (Ghat(n, p)) reachable from vertex 1.
3. The number of vertices in D(n, p) reachable from vertex 1

As (1) and (2) are basically the same, we only really have to prove (3) equivalent to (1)/(2).

Do a depth-first search of Ghat and D. Start on vertex 1. Is edge 1–2 there? If heads, put it into both graphs. Since you never explore an edge in the reverse direction in DFS, this works, since there will never be a case when an edge exists in Ghat but D is asking about the reverse edge. Therefore, you reach the same set of vertices in each case.
Note: The size of a giant, strongly connected component will Ω2*n in a directed graph instead of Ω*n in an undirected graph. (For example, if G(n,p) has a giant component of size 0.6n with given n and p, then D(n,p) will have a giant component of size 0.62n =0.36n)
Let λi be the fraction of vertices of degree i.
Si*(i-2)* λi = 0 (from i=0~∞) to  is the point at which the phase transition occurs

For i = 1, negative coefficients. For i = 0 and 2, evaluates to 0. For i < 2, positive coefficients.

In a random walk, you pick a vertex and start walking. You will never hit a degree-0 vertex unless you start there. For a degree-1 vertex, if you come into it, you can then not get away from it. Degree-2-and-greater vertices are not a problem: they are either neutral (degree 2) or grow the frontier. This explains why (i–2) is in the equation.

However, the i comes from the fact that in a computer program, you always follow edges into vertices; it does not matter, for example, if half the vertices are of degree 1 and the other half are of degree 2, the probability of hitting a degree-2 vertex is more than hitting a degree-1 vertex. In summary, the probability is what you would expect if picking a vertex uniformly at random. However, if searching through edges, you are more likely to hit vertices of higher degree, as there are more paths to them than there are paths to vertices of lower degree.
