
29 January - Greedy Stays Ahead

Today'sPlan

① Interval Scheduling Problem

② Announcements

③ GreedyStays Ahead



ClassicMotivation :
* single central processor
- many job requests

Question : How do we schedule the jobs ?
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Retails
- Each job has a proposed Start time & finishtime

- Processor can handle amost 1 job at a time

Assumption , jobs have equal priority
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Announcements
· HW ① due (solutions by Thurs

* HW 1 Released After Lecture
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EarliestFinish Time

① Sort jobs by finish time

② Schedule = 53
Iterate through jobs in sorted order j1 ... n

- if job j does not conflict w/ Schedule

↳ Schedule & Schedule v2j]
Return Schedule.

j1 -

j2 -

j3 -

j4 -



EarliestFinish Time

① Sort jobs by finish time

② Schedule = 53
Iterate through jobs in sorted order j1 ... n

- if job j does not conflict w/ Schedule

↳ Schedule & Schedule v2j]
Return Schedule.

Laim .

EFT can be implemented with

RT O(nlogn)



TheoremEFT returns a maximumcardinality
set of -conflicting jobs.

* Non-conflicting -> By design

* Maximum Cardinality -> "Greedy stay ahead"
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Greedystays a head

- Imagine some optimal schedule S
*

-

- Compare output of EFT to S *

*head" of
is also optimal

(6) EFT Daysahead

WARNING : Need to define "stays ahead" per problem
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Claim.
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any S
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in the fishtime of thejth job.

S: ---: ---

EFT :
----

Ibi
For each i,

the ith scheduled -i f
jobs satisfy
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FreedyStays Ahead Lemma.

Suppose EFT returns a schedule of k jobs.
*

For any optimal schedule S
&

For all it [1, . .

., k} fil f

-

EFT stays ahead of g
* "

EliestFinish Time Lemma

St is optimal
AND => EFT is also optimal .

Vi fi < f
=
2

"If EFT stays ahead of S*
,
then EFT is optimal

"
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For all it [1, . .

., k} fil f
-

If. By induction on intervals added by EFT

Base case i = 1 ,

--

* By EFT rule
I

first job selected because

f
,
I fi

for all jobs je [n]·

=> f
,
= f,

for any
choice of S*
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For all it [1, . .
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h- ) => fulf( fit fit

Inductive Hypothesis-
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* Consider the Kt job of S
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-

* By non-overlapping : Fr -1 < Su -
* *L* By IH , fu I fut
-

In
sttu

=> [s] non-conflicting wh [Sun
,

fun]

But (scifu] is non-conflicting job of earliest finish time : Ent f
u
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EliestFinish Time Lemma

St is optimal
AND => EFT is also optimal .

Vi fi < f
- 2

&Consider
any non-overlapping set

*

Weshow.

-EFT" stays ahead
"

of S -> IEFT = 1SY
.

* Consider any prefix of indices 1
, ...,
i LIEFT

* fitf
*

= if 1st it ,
then

[Sit, fit] is feasible for EFT .

=> LEFT :IS



Recap

* Earliest Finish Time algorithm
returns maximum non-overlapping schedule

* Runs in Onlogn) time

* Proof of Correctness :

11↳ EFT stays ahead" of optimal
↳

staying ahead=> optimality .



Food for thought.

What if the jobs had

different priorities ?


