
29 January - Greedy Stays Ahead

Today'sPlan

① Interval Scheduling Problem

② Announcements

③ GreedyStays Ahead

ClassicMotivation :
* single central processor
- many job requests

Question : How do we schedule the jobs ?

ClassicMotivation :
* single central processor
- many job requests

Question : How do we schedule the jobs ?

Retails
- Each job has a proposed Start time & finishtime

- Processor can handle amost 1 job at a time

Assumption , jobs have equal priority

ClassicMotivation :
* single central processor
- many job requests

Question : How do we schedule the jobs ?

--
Start 1 finish 1

-
start 2 finish 2

jobs
H

starts finish 3

--
startn finish n

--&

t=0

=Interval Scheduling Problem &

Given .

List ofn jobs , specified by [start , finish] time

4 [s . + .]
,
[32 ,
fu), .

. .

,
Isn

,ful]
Goal

.

Return a set of non-conflicting jobs
of maximumcardinality

=Interval Scheduling Problem &

Given .

List ofn jobs , specified by [start , finish] time

4 [s . + .]
,
[32 ,
fu), .

. .

,
Isn

,ful]
Goal

.

Return a set of non-conflicting jobs
of maximumcardinality

↓
-

Equal priority

=Interval Scheduling Problem &

Given .

List ofn jobs , specified by [start , finish] time

4 [s . + .]
,
[32 ,
fu), .

. .

,
Isn

,ful]
Goal

.

Return a set ofon-conflicting jobs
of maximum cardinality

Defn. A set of intervals S is non-conflicting if
for all it jeS

SiXSj => Fi < Sj

Sj I↳
i

f-- - non-conflictingI

=Interval Scheduling Problem &

Given .

List ofn jobs , specified by [start , finish] time

4 [s . + .]
,
[32 ,
fu), .

. .

,
Isn

,ful]
Goal

.

Return a set ofon-conflicting jobs
of maximum cardinality

Defn. A set of intervals S is non-conflicting if
for all it jeS

SiXSj => Fi < Sj
- f-Sj Is ↳

i # non-conflicting
If conflicting

K

Announcements
· HW ① due (solutions by Thurs

* HW 1 Released After Lecture

=Interval Scheduling Problem &

Given .

List ofn jobs , specified by [start , finish] time

4 [s . + .]
,
[32 ,
fu), .

. .

,
Isn

,ful]
Goal

.

Return a set of non-conflicting jobs
of maximum cardinality

=Interval Scheduling Problem.

Given .

List ofn jobs , specified by [start , finish] time

4 [s . + .]
,
[32 ,
fu), .

. .

,
Isn

,ful]
&adidate "Priority" Functions .

-
H

to - t =a

-

-1
-

-

EarliestFinish Time

① Sort jobs by finish time

② Schedule = 53
Iterate through jobs in sorted order j1 ... n

- if job j does not conflict w/ Schedule

↳ Schedule & Schedule v2j]
Return Schedule.

EarliestFinish Time

① Sort jobs by finish time

② Schedule = 53
Iterate through jobs in sorted order j1 ... n

- if job j does not conflict w/ Schedule

↳ Schedule & Schedule v2j]
Return Schedule.

j1 -

j2 -

j3 -

j4 -

EarliestFinish Time

① Sort jobs by finish time

② Schedule = 53
Iterate through jobs in sorted order j1 ... n

- if job j does not conflict w/ Schedule

↳ Schedule & Schedule v2j]
Return Schedule.

Laim .

EFT can be implemented with

RT O(nlogn)

TheoremEFT returns a maximumcardinality
set of -conflicting jobs.

* Non-conflicting -> By design

* Maximum Cardinality -> "Greedy stay ahead"

Greedystays a head

- Imagine some optimal schedule S
*

-

- Compare output of EFT to S
*

Greedystays a head

- Imagine some optimal schedule S
*

-

- Compare output of EFT to S
*

*head" of
is also optimal

(b) EFT saysahead"

Greedystays a head

- Imagine some optimal schedule S
*

-

- Compare output of EFT to S *

*head" of
is also optimal

(6) EFT Daysahead

WARNING : Need to define "stays ahead" per problem

Claim.

EFT"Sayahead" of
any S

*

in the fishtime of thejth job.

S: ---: ---

EFT :

Ibi

ConvenientNotation
.

Assume jobs ove sorted by
finishingtime.

fi < f* -- < fu
*

+, <f . -- (fr

Claim.

EFT"Sayahead" of
any S

*

in the fishtime of thejth job.

S: ---: ---

EFT :

Ibi
For each i,

the ith scheduled -i f
jobs satisfy

FreedyStays Ahead Lemma.

Suppose EFT returns a schedule of k jobs.
*

For any optimal schedule S
&

For all it [1, . .

., k} fil f

"EFT stays ahead of S
* "

FreedyStays Ahead Lemma.

Suppose EFT returns a schedule of k jobs.
*

For any optimal schedule S
&

For all it [1, . .

., k} fil f

-

EFT stays ahead of g
* "

EliestFinish Time Lemma

St is optimal
AND => EFT is also optimal .

Vi fi < f
=
2

"If EFT stays ahead of S*
,
then EFT is optimal

"

FreedyStays Ahead Lemma. Tvs. St

For all it [1, . .

., k} fil f

Byinduction on intervals added by EFT

FreedyStays Ahead Lemma. Tvs. St

For all it [1, . .

., k} fil f
-

If. By induction on intervals added by EFT

Base case i = 1 ,

--

* By EFT rule
I

first job selected because

f
,
I fi

for all jobs je [n]·

=> f
,
= f,

for any
choice of S*

StFreedyStays Ahead Lemma. Tvs.

For all it [1, . .

., k} fil f
-

InductiveStep : Fit El , --- , k- 13(fit fit (=> fu 1 f
Inductive Hypothesis

FreedyStays Ahead Lemma. Tvs. St

For all it [1, . .

., k} fil f
-

InductiveStep : Fit El ,

,
h-) => fulf(fit fit

Inductive Hypothesis-
*

Su fu
* Consider the ki job of S

*
·

-

L

FreedyStays Ahead Lemma. Tvs. St

For all it [1, . .

., k} fil f
-

InductiveStep : Fit El ,

,
h-) => fulf(fit fit

Inductive Hypothesis-
*
S K f

* Consider the ki job of S
*

-

* B non-overlapping : fre < Su -Y
* *L

FreedyStays Ahead Lemma. Tvs. St

For all it [1, . .

., k} fil f
-

InductiveStep : Fit El ,

,
h-) => fulf(fit fit

Inductive Hypothesis-
*
S K fu

* Consider the Kt job of S
*

-

* By non-overlapping : Fr -1 [Su -
* *L* By IH , fu I fut In-

=> [s] non-conflicting wh [Sun
,

fun]

StFreedyStays Ahead Lemma. Tvs.

For all it [1, . .

., k} fil f
-

InductiveStep : Fit El ,

,
h-) => fulf(fit fit

Inductive Hypothesis-
* *
S K fu

* Consider the Kt job of S
*

-

* By non-overlapping : Fr -1 < Su -
* *L* By IH , fu I fut
-

In
sttu

=> [s] non-conflicting wh [Sun
,

fun]

But (scifu] is non-conflicting job of earliest finish time : Ent f
u

EliestFinish Time Lemma

St is optimal
AND => EFT is also optimal .

Vi f . < f
L - 2

-

EliestFinish Time Lemma

St is optimal
AND => EFT is also optimal .

Vi fi < f
- 2

&Consider
any non-overlapping set

*

Weshow.

-EFT" stays ahead
"

of S -> IEFT = 1SY
.

* Consider any prefix of indices 1
, ...,
i LIEFT

EliestFinish Time Lemma

St is optimal
AND => EFT is also optimal .

Vi fi < f
- 2

&Consider
any non-overlapping set

*

Weshow.

-EFT" stays ahead
"

of S -> IEFT = 1SY
.

* Consider any prefix of indices 1
, ...,
i LIEFT

* fitf
*

= if 1st it ,
then

[Sit, fit] is feasible for EFT .

=> LEFT :IS

Recap

* Earliest Finish Time algorithm
returns maximum non-overlapping schedule

* Runs in Onlogn) time

* Proof of Correctness :

11↳ EFT stays ahead" of optimal
↳

staying ahead=> optimality .

Food for thought.

What if the jobs had

different priorities ?

