3 May 2024 Discrete Log \& Diffie - Hellman

Announcements: Pre-enroll for fall ' 24 began yesterday,

- Bowers CIS new AI Minor

$$
\left.\begin{array}{l}
4780 \\
4700 \\
\text { StsC } 4740
\end{array}\right\} \quad \lambda x \quad x-1000
$$

- CS 6820 Enrollment will be open to ugrads. [Pre-ecrollment is not?]
"One-Way function": easy to compute hard to invert.
\longrightarrow Given x, finding x^{\prime} st $f\left(x^{\prime}\right)=f(x)$ is hard on average over sander $x \in\{0,1\}^{n}$.

Modular exponentiation.
Given $9, x, N, \quad$ compute $g^{x}(\bmod N)$,
Repeated multiplication takes $\Omega(x)=\Omega\left(2^{n}\right)$ in n is \# of bits in bleary representation of x.

To compute $g^{x}:(\bmod N)$ if x even:
compute $g^{x / 2}(\bmod N)$ recursively.
if x odd: if

$$
\text { compute } g^{\frac{x i 1}{2}}
$$

square it multiply by g.
If x has n bits,

$$
\begin{aligned}
T(n) & =T(n-1)+O(n \log n) \\
T(n) & =O\left(n^{2} \log n\right)
\end{aligned}
$$

The inverse ppection is the discrete log. Given N and g and g^{x} (mined N) find x.
Car again solve by repeated multiplication. Repeated squaring decsn't work this the. In fact, we beihem discrete los is computationally hard (for classical computers).

We will be using g, N smeh that $g^{p}=1 \quad(\operatorname{med} N)$ for ρ prime.
In general, define the oder of g mod N to lee the Least d sit. $g^{d} \equiv 1(\bmod N)$) Powers of $g: 1,9,9^{2}, g^{3}, \cdots, g_{1 / 1}^{d}, g_{/ 11}^{d+1}, g_{\| / 1}^{d r 2}, \ldots$
1 $g_{g^{2}}$
The sequence repeats with periled d and the remainder 1 appears as $g^{x}(\operatorname{med} N)$ if and only If x is divisible by d.

Sophie Germain primes.
p is a Sophie German prime if $q=2 p+1$ is also prime.

FACT. If $\rho, g=2 \rho+1$ are both prime, the oder of 4 (ned q) is p.

$$
\begin{aligned}
& \text { Proof. } \\
& 4^{p}=2^{p p}=2^{q-1}=\frac{1}{2}\left(2^{q}\right) \\
& 2^{q}=\sum_{i=0}^{q}\binom{0}{i} \quad\left(\frac{q}{i}\right)=\binom{q}{q-i} \\
& =\sum_{i=0}^{p}\binom{8}{i}+\sum_{i=p^{+1}}^{q}\binom{g}{i} \rightarrow \begin{array}{l}
\text { These are } \\
\text { equal }
\end{array} \\
& \left.4^{p}=2^{q^{-1}}=\sum_{i=0}^{p}\binom{q}{i}=\sum_{i=0}^{\infty} \frac{q!}{i!(q-i)!}\right) \\
& \equiv 1 \quad(\operatorname{med} q) \\
& K \text { dirisis.b. } \\
& \text { by } 9 \\
& \text { except } 1=0
\end{aligned}
$$

The order of 4 is a divisor of ρ. It's not 1 , so it must be pi

Diffie thellman key agreement
Alice and Bob communicate over a public chanel. Eve (attacker) listens.
Goal: A, B ague on an n-bit secret without Eve knowing the secern, (Vries tue computes discrete log.)

Protocol. Alice chooses ρ, q (prime)

$$
g \text { such that } g^{P}=1(\bmod g)
$$

Sends ($p, 8, g$) to bob in public.
Alice picks secret, $a \in\{0, \ldots, p-1\}$.
Bob picks secret, be So..., pul\} . ~
Ever ${ }^{4}$
Alice

Knows b, A

Compute A^{b}

$$
\left(g^{a}\right)^{b}=g^{a b}
$$

They use $g^{a b}$ as their secret key. We believe $g^{a b}$ is hard to compute. given g^{a} and g^{b} (Diffie-Hellman assumption)

Public-Key Crypto. The communication channel is public. The key to encrypt messages is also public.

Alice generates (randomly) a pair of keys. $\rho k=$ public key used for encryption $s k=$ seen key $\ldots \ldots$ decryption.

Goal. Anyone (Bob, Eve, whoever) can easily encrypt moas to Alice.
No one can cosily decrypt without knowing sk.

$$
p k=\left(p, q, g, A \equiv g^{p}=1(\operatorname{med} q) \quad s k=a\right.
$$

Encryption. Sample $b \in\{0, \ldots, p-13$

$$
\left.\begin{array}{r}
B=g^{b}(\operatorname{lnd} g) \\
E_{\cap C}\left(\rho^{k}, m\right)
\end{array}\right)\left(B, A^{b} \cdot m\right) .
$$

Decryption. Receive (B, C).
Know $\exists b \quad B=g^{b}$ $C=g^{a b} \cdot m$
Alice computes

$$
\begin{aligned}
& B^{(p-1) a^{b^{s k}} \cdot\left(f^{b} \cdot m\right.} C \\
& =g^{b(p-1) a} g^{a b} \cdot m=g^{\rho a b} \cdot m=m
\end{aligned}
$$

ElGamal peblic-key encryption

