This list of topics is meant to convey the course organization and the range of subjects covered in the course. With each topic we give a list of problems, applications, and sub-topics that we will discuss. The details are subject to change.

- Introduction
 - An opening problem: stable marriages
 - Range of problems we will consider
- General Algorithmic Techniques
 - Greedy algorithms
 - * Finding optimal solutions with greedy methods (scheduling time intervals)
 - * The minimum spanning tree problem
 - The Divide and Conquer method (some basic primitives in computational geometry)
 - Dynamic Programming with many applications
 - * weighted interval scheduling
 - * knapsack problems
 - * shortest paths
 - * sequence alignment (including efficient implementation via divide and conquer)
 - Flows and Cuts in Networks
 - * The basic flow and cut problems
 - * Basic methods: augmenting paths
 - * Application to matching
 - * Polynomial time methods
 - * Extensions to more general models
 - * Applications to resource allocation, sequencing, and segmentation.
- Computational Intractability
 - NP-completeness

hardness of problems in optimization and constraint satisfaction.

* How to show NP-completeness: reducibility

- * Examples including the traveling salesman problem, 3-dimensional matching, covering, packing, partitioning problems, and subset sum.
- PSPACE completeness hardness of problems in artificial intelligence and game-playing.
- Algorithms for Hard Problems
 - Improved exponential methods
 - Approximation algorithms
 - * greedy algorithms (load balancing, facility location)
 - * The application of linear programming
 - Local search techniques
 - * The Metropolis Algorithm
 - * Simulated annealing
 - * Applications to graph partitioning and neural networks
- Randomized algorithms

(including contention-resolution protocols and satisfiability heuristics)

• Algorithms that run forever