Tell whether the following subsets of $\{a, b\}^*$ are regular or nonregular.

- 1. $\{a^n b^m \mid n = 2m\}$ nonregular
- 2. $\{a^n b^{2m} \mid n \ge 0 \text{ and } m \ge 0\}$ regular
- 3. $\{a^n b^m c^n \mid n \ge 0 \text{ and } m \ge 0\}$ nonregular
- 4. $\{x \in \{a, b\}^* \mid x \text{ contains more } a$'s than b's **honregular**
- 5. $\{a^n b^m \mid n \neq m\}$ nonregular
- 6. $\{a^n b^{n+4810} \mid n \ge 0\}$ nonregular

Of the following two subsets of $\{a, b, c\}^*$, one is regular and the other is nonregular. Which is which?

- 7. $\{xcy \mid x, y \in \{a, b\}^*, \ \#a(x) = \#b(y)\}$ nonregular
- 8. $\{xy \mid x, y \in \{a, b\}^*, \ \#a(x) = \#b(y)\}$ regular

For 7, recall that the regular sets are closed under intersection and homomorphic image. If you intersect 7 with a^*cb^* , then delete the c's with a homomorphism h(a) = a, h(b) = b, $h(c) = \varepsilon$, you get your favorite nonregular set $\{a^nb^n \mid n \ge 0\}$. So 7 must not be regular.

The set 8 is in fact just $\{a, b\}^*$. That is, every string $z \in \{a, b\}^*$ can be expressed as xy with #a(x) = #b(y) for some x, y. Suppose |z| = n. For $0 \le i \le n$, let x_i be the prefix of z of length i, and let y_i be the suffix of z of length n - i; that is, $z = x_i y_i$ with $|x_i| = i$ and $|y_i| = n - i$. Let $f(i) = \#a(x_i) - \#b(y_i), 0 \le i \le n$. Then $f(0) = \#a(\varepsilon) - \#b(z) \le 0$, $f(n) = \#a(z) - \#b(\varepsilon) \ge 0$, and f changes by +1 or -1 in each step as i goes from 0 to n. There must be an i for which f(i) = 0, that is, $\#a(x_i) = \#b(y_i)$.