- 1. If Σ contains at least one element, then Σ^* is infinite. **true**
- 2. There are strings in Σ^* of infinite length. false—The set Σ^* is the set of all finite-length strings over the alphabet Σ (K, Def. 2.1, p. 8). For example,

 $\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, baa, abb, bab, bba, bbb, aaaa, aaab, \ldots\}.$

This set contains infinitely many strings and there is no finite bound on their length; nevertheless, every element is of finite length. The length of a string $x \in \Sigma^*$ is the number of letters in it and is denoted |x|. For example, |aaab| = 4.

- 3. Set intersection is associative. **true**
- 4. $A \cup \emptyset = \emptyset$. false
- 5. $A\emptyset = \emptyset$. true—Formally, AB is defined to be the set of all strings xy obtained by concatenating a string x from A with a string y from B. If $B = \emptyset$, then there are no strings $y \in B$, so there are no possible such concatenations xy. Thus $A\emptyset = \emptyset$.
- 6. The complement of $\{a\}^*$ in $\{a, b\}^*$ is $\{b\}^*$. false—The set $\{a, b\}^*$ is the set of all strings of *a*'s and *b*'s. The set $\{a\}^*$ is the set of all strings consisting only of *a*'s. A string does not consist only of *a*'s iff it contains at least one *b*. The complement of $\{a\}^*$ in $\{a, b\}^*$ is therefore the set of strings of *a*'s and *b*'s containing at least one *b*. This is the set $\{a, b\}^*\{b\}\{a, b\}^*$.
- 7. There is exactly one string in Σ^* of length 0. true
- 8. $\emptyset = \varepsilon$. false— \emptyset is a set, ε is a string. Type error!
- 9. $\emptyset = \{\varepsilon\}$. false—The set \emptyset is the empty set. It containing no elements. The set $\{\varepsilon\}$ contains one element, namely ε , the null string.
- 10. $\{ab, a\}\{ba, a\} = \{abba, aba, aa\}$. true