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and let u : Tx,(B) — B be the valuation

u(r) = H us (7).

[s]#[t]

Since all components B ; are models of Th D, so is their product 8. By Theorem
3.36(ii), u factors through T (B)/ThD as [ ] o v, where v : Tx(B)/ThD — B.
Moreover, v is injective, since if [s] # [t], then v(s) # v(t) in at least one component,
namely B;,. Thus Tx(B)/ThD is isomorphic under v to a subalgebra of the
product 8. =

COROLLARY 3.43 (BIRKHOFF): Let D be a class of Y-algebras. The following
are equivalent:

(i) D is a variety;
(i) D=HSPD;
(i) D = {H,S,P}*D.

Proof That (ii) and (iii) are equivalent and imply (i) are immediate from Theorem
3.42. That (i) implies (ii) follows from Theorem 3.42 and the fact that for any set
of formulas ®, Mod ® = Mod ThMod & (Exercise 3.21). =

3.4 Predicate Logic

First-order predicate logic is the logic of predicates and quantification (V, 3) over
elements of a structure.

Syntax

Syntactically, we start with a countable signature as with equational logic, except
that we include some relation or predicate symbols p,q,r, ... in addition to the func-
tion symbols f,g,... . A signature or vocabulary then consists of a set ¥ of function
and relation symbols, each with an associated arity (number of inputs). Function
and relation symbols of arity 0, 1, 2, 3, and n are called nullary, unary, binary,
ternary, and n-ary, respectively. Nullary elements are often called constants. One
of the relation symbols may be the binary equality symbol =. In most applications,
Y is finite.
The language consists of:



MIT Press Math7X9/2000/06/30:10:36 Page 103

Logic 103

the function and relation symbols in X

a countable set X of individual variables x,y, . ..

the propositional connectives — and 0

e the universal quantifier symbol V (“for all”)

parentheses.

As in Section 3.2, the other propositional connectives V, A, 1, =, and ¢ can
all be defined in terms of — and 0. Similarly, we will define below the existential
quantifier 3 (“there exists”) in terms of V.

Terms s,t,... are exactly as in equational logic (see Section 3.3). A term is a
ground term if it contains no variables.

Formulas p,1, ... are defined inductively. A formula is either

e an atomic formula p(ti,...,t,), where p is an n-ary relation symbol and
ti,...,t, are terms; or

e 0 =1, 0, or Vz ¢, where ¢ and v are formulas and z is a variable.

Intuitively, in the formula Vz ¢, we think of ¢ as a property of an object x; then
the formula Vz ¢ says that that property ¢ holds for all objects x.

The other propositional operators are defined from — and 0 as described in
Section 3.2. The quantifier 3 is defined as follows:

dz ¢ & v . (3.4.1)
Intuitively, in the formula 3z ¢, we again think of ¢ as a property of an object
x; then the formula Jx ¢ says that that there exists an object x for which the
property ¢ holds. The formal definition (3.4.1) asserts the idea that there exists an
x for which ¢ is true if and only if it is not the case that for all z, ¢ is false.

As with propositional logic, we will assume a natural precedence of the operators
and use parentheses where necessary to ensure that a formula can be read in one
and only one way. The precedence of the propositional operators is the same as in
Section 3.2. The quantifier V binds more tightly than the propositional operators;
thus Vz ¢ — 1 should be parsed as (Vz ¢) — .

The family of languages we have just defined will be denoted collectively by
L,.,. The two subscripts w refer to the fact that we allow only finite (that is, < w)
conjunctions and disjunctions and finitely many variables.

EXAMPLE 3.44: The first-order language of number theory is suitable for express-
ing properties of the natural numbers N. The signature consists of binary function
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symbols + and - (written in infix), constants 0 and 1, and binary relation symbol
= (also written in infix). A typical term is (z + 1) - y and a typical atomic formula
is x +y = z. The formula

Ve Jy (z<yAVz(z|ly—=(z=1Vz=y)))

expresses the statement that there are infinitely many primes. Here s < ¢ is an
abbreviation for Jw s+ w =t and s | ¢t (read “s divides ¢”) is an abbreviation for
Jws-w=t.

Scope, Bound and Free Variables

Let Q be either V or 3. If Qz ¢ occurs as a subformula of some formula ), then
that occurrence of ¢ in 1 is called the scope of that occurrence of Qz in . An
occurrence of a variable y in v that occurs in a term is a free occurrence of y in 1 if
it is not in the scope of any quantifier Qy with the same variable y. If Qy ¢ occurs
as a subformula of ¥ and y occurs free in ¢, then that occurrence of y is said to be
bound to that occurrence of Qy. Thus an occurrence of y in ¢ is bound to the Qy
with smallest scope containing that occurrence of y, if such a Qy exists; otherwise
it is free.

We say that a term ¢ is free for y in ¢ if no free occurrence of y in ¢ occurs in
the scope of a quantifier Qz, where x occurs in ¢. This condition says that it is safe
to substitute t for free occurrences of y in ¢ without fear of some variable x of ¢
being inadvertently captured by a quantifier.

EXAMPLE 3.45: In the formula

Jz ((Vy Iz q(z,y)) Ap(z,y,2)),

the scope of the first Jz is (Vy Jz q(z,y)) A p(z,y,2), the scope of the Vy is
Jz q(z,y), and the scope of the second Iz is ¢(z,y). The occurrence of z in
q(z,y) is bound to the second Jz. The z in p(x,y, z) occurs free in the subformula
(Vy 3z q(x,y)) Ap(x,y, z) but is bound to the first 3z. The occurrence of y in ¢(z, y)
is bound to the Vy, but the occurrence of y in p(z,y, z) is free. The only occurrence
of z in the formula is a free occurrence. The term f(x) is not free for either y or z
in the formula, because substitution of f(x) for y or z would result in the capture
of z by the first Jz.

Note that the adjectives “free” and “bound” apply not to variables but to oc-
currences of variables in a formula. A formula may have free and bound occurrences
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of the same variable. For example, the variable y in the formula of Example 3.45
has one free and one bound occurrence. Note also that occurrences of variables in
quantifiers—occurrences of the form Vy and Jy—do not figure in the definition of
free and bound.

A variable is called a free variable of a formula ¢ if it has a free occurrence in
©. The notation [z /t1,...,z,/ts] or p[z;/t; | 1 < i < n] denotes the formula ¢
with all free occurrences of x; replaced with ¢;, 1 < i < n. The substitution is done
for all variables simultaneously. Note that ¢[z/s,y/t] can differ from p[z/s][y/t] if
s has an occurrence of y. Although notationally similar, the substitution operator
[/t] should not be confused with the function-patching operator defined in Section
1.3.

We occasionally write ¢(x1,... ,z,) to indicate that all free variables of ¢ are
among 1, ... ,&,. The variables x1,...,x, need not all appear in ¢(x1,...,z,),
however. When ¢ = ¢(x1,... ,x,), we sometimes write ¢(t1,... ,t,) instead of
cp[:vl/tl, ce ,mn/tn].

A formula is a closed formula or sentence if it contains no free variables. The
universal closure of a formula ¢ is the sentence obtained by preceding ¢ with enough
universal quantifiers Vz to bind all the free variables of ¢.

Semantics

A relational structure over signature ¥ is a structure 2 = (A4, my) where A is a
nonempty set, called the carrier or domain of 2, and mg is a function assigning
an n-ary function f% : A" — A to each n-ary function symbol f € ¥ and an n-ary
relation p® C A" to each n-ary relation symbol p € X. As with equational logic,
nullary functions are considered elements of A; thus constant symbols ¢ € ¥ are
interpreted as elements ¢ € A.

As in equational logic, we define a wvaluation to be a Y-homomorphism u :
Tx.(X) — 2. A valuation u is uniquely determined by its values on the variables
X.

Given a valuation u, we define u[z/a] to be the new valuation obtained from u
by changing the value of z to a and leaving the values of the other variables intact;
thus

ule/d(y) € uly), y#u,

) def

ulz/al(z) = a.

This is the same as in equational logic.
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The satisfaction relation F is defined inductively as follows:

Aok plte,... ta) £ p(ults),...  u(ts))
Nukp sy &5 Aukp=AukFy)
20, u FVr ¢ PN for all a € A, 2, ulz/a] E ¢.

It follows that

QuFpVy <= AuFporAukFq
AuEpAYy <= AukFpandA,uEy

A,uE-p <= A uk p; that is, if it is not the case that A, u F ¢
A, uFJr ¢ <= there exists an a € A such that A, u[r/a] F ¢.

Also, 2, u ¥ 0 and 2, u F 1.

If A, u E p, we say that ¢ is true in 2 under valuation u, or that 2, u is a model
of p, or that 2, u satisfies . If ® is a set of formulas, we write A, u F & if A, u F ¢
for all p € ® and say that 2, u satisfies ®. If ¢ is true in all models of ®, we write
® E o and say that ¢ is a logical consequence® of ®. If @ E ¢, we write F ¢ and say
that ¢ is valid.

It can be shown that if ¢ is a sentence, then F does not depend on the valuation
w; that is, if 2, u F ¢ for some u, then 2, u F ¢ for all u (Exercise 3.29). In this
case, we omit the u and just write 2 F ¢. If ® is a set of sentences, then A F ®
means that 2 F ¢ for all p € .

Two formulas ¢, ¢ are said to be logically equivalent if E ¢ < 1.

The following lemma establishes a relationship between the function-patching
operator [z/a] on valuations and the substitution operator [z/t] on terms and
formulas.

LEMMA 3.46:

(i) For any valuation u and terms s,t € Tx(X),
ulzfu(®)(s) = u(sle/t).

(i) If ¢ is free for z in @, then

Wulz/ult)Fe = Aukplx/t].

3 This notion of logical consequence is slightly different from the one used in equational logic
(Section 3.3). There, the free variables of formulas were assumed to be implicitly universally
quantified. We abandon that assumption here because we have explicit quantification.



