Here are proofs of (9.14)-(9.18), p. 50. We'll use the notation of Supplementary Lecture A and refer to the axioms (A.1)-(A.13) instead of (9.1)-(9.13). First let's establish some useful lemmas.

Lemma 1 The operations $+, \cdot,$ and * are *monotone* with respect to \leq ; that is, for all a, b, c, if $a \leq b$, then

(i) $a + c \leq b + c$, (ii) $c + a \le c + b$, (iii) $ac \leq bc$, (iv) $ca \leq cb$,

(v) $a^* \leq b^*$.

To show (i),

$a \le b \Rightarrow a + b = b$	definition of \leq
$\Rightarrow a + b + c = b + c$	
$\Rightarrow a + c + b + c = b + c$	idempotence, commutativity of +
$\Rightarrow a + c \le b + c$	definition of \leq .

Property (ii) follows from (i) and commutativity of +. To show (iii),

$a \le b \Rightarrow a + b = b$	definition of \leq
$\Rightarrow (a+b)c = bc$	
$\Rightarrow ac + bc = bc$	distributivity
$\Rightarrow ac \leq bc$	definition of \leq .

The argument for (iv) is symmetric. For (v), we have $1 + ab^* \le 1 + bb^* = b^*$ by monotonicity of multiplication and (A.10). Then $a^* \leq b^*$ follows from (A.12).

Lemma 2 $a^*a^* = a^*$.

To show the inequality \leq , by (A.12) it suffices to show $a^* + aa^* \leq a^*$.

$$a^* + aa^* = 1 + aa^* + aa^*$$
 by (A.10)
= $1 + aa^*$ by idempotence
= a^* by (A.10).

To show the reverse inequality, by (A.12) it suffices to show $1 + aa^*a^* \le a^*a^*$.

$$1 + aa^{*}a^{*} \leq 1 + aa^{*} + aa^{*}a^{*}$$

= $a^{*} + aa^{*}a^{*}$ (A.10)
= $(1 + aa^{*})a^{*}$ distributivity
= $a^{*}a^{*}$ (A.10).

Lemma 3 $a^{**} = a^*$.

To show \leq , by (A.12) it suffices to show $1 + a^*a^* \leq a^*$. We have $1 \leq a^*$ by (A.10) and $a^*a^* \leq a^*$ by Lemma 2, thus $a^{**} \leq a^*$ since + gives the least upper bound with respect to \leq .

For the reverse inequality, we know $a \le a^*$, since by (A.10) and distributivity, $a^* = 1 + aa^* = 1 + a(1 + aa^*) = aa^*$ $1 + a + aaa^*$. Then $a^* \leq a^{**}$ follows from monotonicity of *.

(9.14) To prove $(ab)^*a = a(ba)^*$, it suffices to prove the two inequalities $(ab)^*a \le a(ba)^*$ and $(ab)^*a \ge a(ba)^*$. To show $(ab)^*a \le a(ba)^*$, by (A.12) it suffices to show $a + aba(ba)^* \le a(ba)^*$. But

$$a + aba(ba)^* = a(1 + ba(ba)^*)$$
 distributivity (A.8)
= $a(ba)^*$ (A.10).

The argument for the reverse inequality is symmetric, using (A.13), (A.9), and (A.11).

(9.15) To prove $(a^*b)^*a^* = (a+b)^*$, again it suffices to prove inequalities in both directions. To show $(a^*b)^*a^* \le (a+b)^*$,

$(a^*b)^*a^* \le ((a+b)^*(a+b))^*(a+b)^*$	monotonicity
$\leq (a+b)^{**}(a+b)^*$	(A.11) and monotonicity
$= (a+b)^*(a+b)^*$	Lemma 3
$= (a + b)^*$	Lemma 2.

For the reverse inequality, by (A.12) it suffices to show $1 + (a + b)(a^*b)^*a^* \le (a^*b)^*a^*$. By distributivity and the fact that + gives the least upper bound with respect to \le , it suffices to show

- (a) $1 \le (a^*b)^*a^*$
- (b) $a(a^*b)^*a^* \le (a^*b)^*a^*$
- (c) $b(a^*b)^*a^* \le (a^*b)^*a^*$.

The inequality (a) follows from two applications of (A.10) and monotonicity. For (b),

$$\begin{aligned} a(a^*b)^*a^* &= a(1+a^*b(a^*b)^*)a^* & (A.10) \\ &= aa^* + aa^*b(a^*b)^*a^* & \text{distributivity (A.8) and (A.9)} \\ &\leq a^* + a^*b(a^*b)^*a^* & (A.10) \text{ and monotonicity} \\ &= (1+a^*b(a^*b)^*)a^* & \text{distributivity (A.9)} \\ &= (a^*b)^*a^* & (A.10). \end{aligned}$$

Finally, for (c), by (A.10) and monotonicity we have

$$b(a^*b)^*a^* \le a^*b(a^*b)^*a^* \le (a^*b)^*a^*.$$

- (9.16) This follows immediately from (9.14) and (9.15).
- (9.17) The inequality \geq is immediate from monotonicity. For \leq , using distributivity, commutativity, (A.10), and idempotence, we have

$$1 + (1 + a)a^* = 1 + a^* + aa^*$$

= 1 + aa^* + a^*
= a^* + a^*
= a^*,

therefore $(1 + a)^* \le a^*$ by (A.12).

(9.18) For \leq , by distributivity and (A.11) we have $a + a^*aa = (1 + a^*a)a = a^*a$, therefore $aa^* \leq a^*a$ by (A.13). The argument for the reverse inequality is symmetric.