Here are proofs of (9.14)–(9.18), p. 50. I'll use the notation of Supplementary Lecture A and refer to the axioms (A.1)–(A.13) instead of (9.1)–(9.13). First let's establish some useful lemmas.

Lemma 1 The operations +, \cdot , and * are *monotone* with respect to \leq ; that is, for all a, b, c, if a < b, then

- (i) $a+c \leq b+c$,
- (ii) $c + a \le c + b$,
- (iii) $ac \leq bc$,
- (iv) $ca \leq cb$,
- (v) $a^* < b^*$.

To show (i),

$$\begin{array}{ll} a \leq b & \Rightarrow & a+b=b & \text{definition of} \leq \\ & \Rightarrow & a+b+c=b+c \\ & \Rightarrow & a+c+b+c=b+c & \text{idempotence, commutativity of} + \\ & \Rightarrow & a+c \leq b+c & \text{definition of} \leq. \end{array}$$

Property (ii) follows from (i) and commutativity of +. To show (iii),

$$\begin{array}{ll} a \leq b & \Rightarrow & a+b=b & \text{ definition of } \leq \\ & \Rightarrow & (a+b)c=bc \\ & \Rightarrow & ac+bc=bc & \text{ distributivity} \\ & \Rightarrow & ac \leq bc & \text{ definition of } \leq. \end{array}$$

The argument for (iv) is symmetric. For (v), we have $1 + ab^* \le 1 + bb^* = b^*$ by monotonicity and (A.10). Then $a^* \le b^*$ follows from (A.12).

Lemma 2 $a^*a^* = a^*$.

To show the inequality \leq , by (A.12) it suffices to show $a^* + aa^* \leq a^*$.

$$a^* + aa^* = 1 + aa^* + aa^*$$
 by (A.10)
= $1 + aa^*$ by idempotence
= a^* by (A.10).

To show the reverse inequality, by (A.12) it suffices to show $1 + aa^*a^* \le a^*a^*$.

$$1 + aa^*a^* \le 1 + aa^* + aa^*a^*$$

= $a^* + aa^*a^*$ (A.10)
= $(1 + aa^*)a^*$ distributivity
= a^*a^* (A.10).

Lemma 3 $a^{**} = a^*$.

To show \leq , by (A.12) it suffices to show $1 + a^*a^* \leq a^*$. We have $1 \leq a^*$ by (A.10) and $a^*a^* \leq a^*$ by Lemma 2, thus $a^{**} \leq a^*$ since + gives the least upper bound with respect to \leq .

For the reverse inequality, we know $a \le a^*$, since by (A.10) and distributivity, $a^* = 1 + aa^* = 1 + a(1 + aa^*) = 1 + a + aaa^*$. Then $a^* \le a^{**}$ follows from monotonicity of *.

- (9.14) I did this one in class.
- (9.15) To prove $(a^*b)^*a^* = (a+b)^*$, it suffices to prove inequalities in both directions. To show $(a^*b)^*a^* \le (a+b)^*$,

$$(a^*b)^*a^* \le ((a+b)^*(a+b))^*(a+b)^*$$
 monotonicity
 $\le (a+b)^{**}(a+b)^*$ (A.11) and monotonicity
 $= (a+b)^*(a+b)^*$ Lemma 3
 $= (a+b)^*$ Lemma 2.

For the reverse inequality, by (A.12) it suffices to show $1 + (a+b)(a^*b)^*a^* \le (a^*b)^*a^*$. By distributivity and the fact that + gives the least upper bound with respect to \le , it suffices to show

- (a) $1 \le (a^*b)^*a^*$
- (b) $a(a^*b)^*a^* \le (a^*b)^*a^*$
- (c) $b(a^*b)^*a^* \le (a^*b)^*a^*$.

The inequality (a) follows from two applications of (A.10) and monotonicity. For (b),

$$a(a^*b)^*a^* = a(1 + a^*b(a^*b)^*)a^*$$
 (A.10)
 $= aa^* + aa^*b(a^*b)^*a^*$ distributivity (A.8) and (A.9)
 $\leq a^* + a^*b(a^*b)^*a^*$ (A.10) and monotonicity
 $= (1 + a^*b(a^*b)^*)a^*$ distributivity (A.9)
 $= (a^*b)^*a^*$ (A.10).

Finally, for (c), by (A.10) and monotonicity we have

$$b(a^*b)^*a^* \le a^*b(a^*b)^*a^* \le (a^*b)^*a^*.$$

- (9.16) This follows immediately from (9.14) and (9.15).
- (9.17) The inequality \geq is immediate from monotonicity. For \leq , using distributivity, commutativity, (A.10), and idempotence, we have

$$1 + (1 + a)a^* = 1 + a^* + aa^*$$

$$= 1 + aa^* + a^*$$

$$= a^* + a^*$$

$$= a^*,$$

therefore $(1+a)^* \le a^*$ by (A.12).

(9.18) For \leq , by distributivity and (A.11) we have $a + a^*aa = (1 + a^*a)a = a^*a$, therefore $aa^* \leq a^*a$ by (A.13). The argument for the reverse inequality is symmetric.