Here are proofs of (9.14) – (9.18) , p. 50. I'll use the notation of Supplementary Lecture A and refer to the axioms $(A.1)$ – $(A.13)$ instead of (9.1) – (9.13) . First let's establish some useful lemmas.

Lemma 1 The operations +, \cdot , and $*$ are monotone with respect to \leq ; that is, for all a, b, c, if $a \leq b$, then

- (i) $a + c \leq b + c$, (ii) $c + a \leq c + b$,
- (iii) $ac \le bc$,
- (iv) $ca \leq cb$,
- (v) $a^* \leq b^*$.

To show (i),

 $a \leq b \Rightarrow a + b = b$ definition of \leq \Rightarrow $a+b+c=b+c$ \Rightarrow $a + c + b + c = b + c$ idempotence, commutativity of + $\Rightarrow a+c < b+c$ definition of <.

Property (ii) follows from (i) and commutativity of $+$. To show (iii),

$$
a \leq b \Rightarrow a + b = b
$$
 definition of \leq
\n
$$
\Rightarrow (a + b)c = bc
$$

\n
$$
\Rightarrow ac + bc = bc
$$
 distributivity
\n
$$
\Rightarrow ac \leq bc
$$
 definition of \leq .

The argument for (iv) is symmetric. For (v), we have $1 + ab^* \leq 1 + bb^* = b^*$ by monotonicity and $(A.10)$. Then $a^* \leq b^*$ follows from $(A.12)$.

Lemma 2 * $a^* = a^*$.

To show the inequality \leq , by (A.12) it suffices to show $a^* + aa^* \leq a^*$.

$$
a^* + aa^* = 1 + aa^* + aa^* \quad \text{by (A.10)}
$$

= 1 + aa^* \quad \text{by idempotence}
= a^* \quad \text{by (A.10).}

To show the reverse inequality, by (A.12) it suffices to show $1 + aa^*a^* \leq a^*a^*$.

$$
1 + aa^*a^* \leq 1 + aa^* + aa^*a^*
$$

= $a^* + aa^*a^*$ (A.10)
= $(1 + aa^*)a^*$ distributivity
= a^*a^* (A.10).

Lemma 3 ** = a^* .

> To show \leq , by (A.12) it suffices to show $1 + a^* a^* \leq a^*$. We have $1 \leq a^*$ by (A.10) and $a^*a^* \leq a^*$ by Lemma 2, thus $a^{**} \leq a^*$ since + gives the least upper bound with respect to \leq .

> For the reverse inequality, we know $a \leq a^*$, since by (A.10) and distributivity, $a^* =$ $1 + aa^* = 1 + a(1 + aa^*) = 1 + a + aaa^*$. Then $a^* \leq a^{**}$ follows from monotonicity of ∗.

(9.14) I did this one in class.

(9.15) To prove $(a^*b)^*a^* = (a+b)^*$, it suffices to prove inequalities in both directions. To show $(a^*b)^*a^* \le (a+b)^*,$

$$
(a^*b)^*a^* \le ((a+b)^*(a+b))^*(a+b)^* \quad \text{monotonicity}
$$

\n
$$
\le (a+b)^{**}(a+b)^* \qquad \text{(A.11) and monotonicity}
$$

\n
$$
= (a+b)^*(a+b)^* \qquad \text{Lemma 3}
$$

\n
$$
= (a+b)^* \qquad \text{Lemma 3}
$$

\n
$$
= (a+b)^* \qquad \text{Lemma 2.}
$$

For the reverse inequality, by $(A.12)$ it suffices to show $1 + (a+b)(a^*b)^*a^* \leq (a^*b)^*a^*$. By distributivity and the fact that + gives the least upper bound with respect to \leq , it suffices to show

(a)
$$
1 \leq (a^*b)^*a^*
$$

\n(b) $a(a^*b)^*a^* \leq (a^*b)^*a^*$
\n(c) $b(a^*b)^*a^* \leq (a^*b)^*a^*$.

The inequality (a) follows from two applications of (A.10) and monotonicity. For (b),

$$
a(a^*b)^*a^* = a(1+a^*b(a^*b)^*)a^*
$$
 (A.10)
\n
$$
= aa^* + aa^*b(a^*b)^*a^*
$$
 distributivity (A.8) and (A.9)
\n
$$
\leq a^* + a^*b(a^*b)^*a^*
$$
 (A.10) and monotonicity
\n
$$
= (1+a^*b(a^*b)^*)a^*
$$
 distributivity (A.9)
\n
$$
= (a^*b)^*a^*
$$
 (A.10).

Finally, for (c), by (A.10) and monotonicity we have

$$
b(a^*b)^*a^* \leq a^*b(a^*b)^*a^* \leq (a^*b)^*a^*.
$$

- (9.16) This follows immediately from (9.14) and (9.15) .
- (9.17) The inequality \geq is immediate from monotonicity. For \leq , using distributivity, commutativity, (A.10), and idempotence, we have

$$
1 + (1 + a)a^{*} = 1 + a^{*} + aa^{*}
$$

= 1 + aa^{*} + a^{*}
= a^{*} + a^{*}
= a^{*},

therefore $(1+a)^* \leq a^*$ by $(A.12)$.

(9.18) For \leq , by distributivity and (A.11) we have $a + a^* a a = (1 + a^* a) a = a^* a$, therefore $aa^* \leq a^*a$ by (A.13). The argument for the reverse inequality is symmetric.