
CS481F01 Proving L = L(M)

A. Demers

14 Sept

Here are some hints on proving a NFA recognizes a language L. Doing this for
a DFA is similar, and usually easier.

In general there can be a lot of creativity involved in defining a machine to
recognize a given language L and then proving it correct. The machine definition
and proof are not independent – som machines recognizing L may be much easier
to prove correct than other machines.

Suppose you have a language L and a NFA

N = (Q,Σ,∆, S, F)

and you need to show L = L(N). Of course that means you must show

x ∈ L ⇒ (∃s ∈ S, f ∈ F)(f ∈ ∆̂({s}, x)) and
(∃s ∈ S, f ∈ F)(f ∈ ∆̂({s}, x)) ⇒ x ∈ L

Intuitively, you usually do this by associating each state q ∈ Q with some prop-
erty Pq of the input strings that can cause N to reach state q. You then show
that L is exactly the set of strings for which Pf is true for some final state f .

More formally, define a predicate

P ⊆ Q× Σ∗

and show the following two things:

(a) q ∈ ∆̂(S, x) ⇔ P (q, x)
(b) x ∈ L ⇔ (∃q ∈ F)P (q, x)

Clearly this shows that L = L(N), with the predicate P used to characterize
the strings that can reach the various states of Q. The proof of (a) generally

1

uses induction on x and possibly cases on q. The proof of (b) is more ad hoc,
but is usually easy, assuming you have designed Q and ∆ carefully.

So here is an example. Let Σ = {0, 1}, and let Lk be strings over Σ∗ that end
with at least k consecutive 1’s. That is,

Lk = { x1k | x ∈ Σ∗}.

A simple NFA recognizing Lk is

Nk = ({qi|0 ≤ i ≤ k},Σ,∆k, {q0}, {qk}}
∆k(qi, 0) = {q0} 0 ≤ i ≤ k

∆k(qj , 1) = {qj , qj+1} 0 ≤ j < k

∆k(qk, 1) = {qk}

Drawing the state diagram is left as an exercise, since it’s much easier than
typesetting the state diagram. Note that some of the edges in the state diagram
are not absolutely necessary – for example

q1 −→1 q1

does not change the recognized language, but it simplifies the formal description
of the machine.

Intuitively, the machine is correct because the index i of state qi is just the
minimum number of consecutive 1’s that must be seen in order to reach the
state. We capture this by the predicate

P (qi, x) ≡ (∃y)(x = y1i)

Then our proof obligation (a) from above becomes

(ak) qi ∈ ∆̂({q0, x}) ⇔ (∃y)(x = y1i)

and (b) becomes

(bk) x ∈ Lk ⇔ (∃q ∈ F)P (q, x)
⇔ P (qk, x)
⇔ (∃y)(x = y1k)

We need to prove both of these. Of course, (bk) is easy – if we just substitute
in the definition of Lk we get

x ∈ { y1k | y ∈ Σ∗} ⇔ (∃y)(x = y1k)

2

which is immediate.

A formal proof of (ak) uses induction on |x| and, if this machine were more
complex, could require explicit cases on q in the basis and inductive steps. Here
is a proof:

Basis: (x = ε). For the basis, P (qi, ε) is clearly true iff i = 0. Since

∆̂(S, ε) = S = {q0}

the result is immediate.

Inductive Step: (x = x′0). In this case,

∆̂(S, x′0) =
⋃
{ ∆(q, 0) | q ∈ ∆̂(S, x′) } = { q0 }

= { qi | ∃y x′0 = y1i }
= { q | P (q, x) }

as required.

Inductive Step: (x = x′1). For this case, define ⊕ by

m⊕ n = min(m + n, k)

so that

∆(qi, 1) = { qi, qi⊕1 }

Now

∆̂(S, x′1) =
⋃
{ ∆(qi, 1) | qi ∈ ∆̂(S, x′) }

=
⋃
{ {qi, qi⊕1} | qi ∈ ∆̂(S, x′) }

By the induction hypothesis, this is

=
⋃
{ {qi, qi⊕1} | ∃y′ x′ = y′1i }

=
⋃
{ {qi, qi⊕1} | ∃y′ x′1 = y′1i⊕1 }

from which the result is immediate. tu

3

