using PyPlot
using LinearAlgebra
using Statistics
using Random
Random.seed!(1234567);
Loss function is
struct LinRegDataset
Xs :: Array{Array{Float64,1},1}
Ys :: Array{Float64,1}
end
function generate_synthetic_dataset(d::Int64, n::Int64)
Random.seed!(8675309);
# generate random unit vector
u = randn(d); u /= norm(u);
Xs = [randn(d) for i = 1:n];
Ys = [dot(u, Xs[i]) + 0.1 * randn() for i = 1:n];
return LinRegDataset(Xs, Ys);
end
d = 100;
n = 1000;
TD = generate_synthetic_dataset(d, n);
function total_loss(TD :: LinRegDataset, w :: Array{Float64,1})
return mean([(dot(w, TD.Xs[i]) - TD.Ys[i])^2 / 2 for i = 1:n]);
end
total_loss(TD, zeros(d))
function grad_fi(TD :: LinRegDataset, i::Int64, w :: Array{Float64,1})
return TD.Xs[i] * (dot(w, TD.Xs[i]) - TD.Ys[i]);
end
function total_grad(TD :: LinRegDataset, w :: Array{Float64,1})
n = length(TD.Xs);
return mean([grad_fi(TD, i, w) for i = 1:n]);
end
function gradient_descent(TD :: LinRegDataset, alpha :: Float64, num_iters :: Int64, loss_interval :: Int64)
n = length(TD.Xs);
d = length(TD.Xs[1]);
# initialize the parameters to zero
w = zeros(d);
# vector to store loss after t iterations
measurement_times = Float64[0];
loss_at_t = Float64[total_loss(TD, w)];
# run iteratively
for t = 1:num_iters
w = w - alpha * total_grad(TD, w);
if t % loss_interval == 0
push!(measurement_times, t);
push!(loss_at_t, total_loss(TD, w));
end
end
return (measurement_times, loss_at_t)
end
function stochastic_gradient_descent(TD :: LinRegDataset, alpha :: Float64, num_iters :: Int64, loss_interval :: Int64)
n = length(TD.Xs);
d = length(TD.Xs[1]);
# initialize the parameters to zero
w = zeros(d);
# vector to store loss after t iterations
measurement_times = Float64[0];
loss_at_t = Float64[total_loss(TD, w)];
# run iteratively
for t = 1:num_iters
i = rand(1:n);
w = w - alpha * grad_fi(TD, i, w);
if t % loss_interval == 0
push!(measurement_times, t);
push!(loss_at_t, total_loss(TD, w));
end
end
return (measurement_times, loss_at_t)
end
alpha = 0.01;
num_iters = 10000;
(gd_t, gd_loss) = gradient_descent(TD, alpha, num_iters, 10);
(sgd_t, sgd_loss) = stochastic_gradient_descent(TD, alpha, num_iters, 10);
# also, benchmark the time it takes to run
@time gradient_descent(TD, alpha, num_iters, num_iters);
@time stochastic_gradient_descent(TD, alpha, num_iters, num_iters);
plot(gd_t, gd_loss; label="gradient descent");
plot(sgd_t, sgd_loss; label="stochastic gradient descent");
legend();
title("Convergence of Gradient Descent and Stochastic Gradient Descent");
xlabel("iterations");
ylabel("total loss");
plot(gd_t, gd_loss; label="gradient descent");
plot(sgd_t, sgd_loss; label="stochastic gradient descent");
legend();
title("Convergence of Gradient Descent and Stochastic Gradient Descent");
xlabel("iterations");
ylabel("total loss");
ylim([0.0,0.02]);
Notice that SGD with a constant step size did not converge asymptotically to as low of a loss that gradient descent did. Instead, it converged down to some level, and then the loss stopped decreasing and the value of the loss is noisy. This is sometimes called converging to a noise ball.
Often, converging to a noise ball is fine: we don't always need the exact solution to the optimization problem.
Question: Why might it be fine to get an approximate solution to an optimization problem for training?
.
.
.
.
Still, it is good to be able to solve optimization problems to arbitrary accuracy if we want to. We can do this with stochastic gradient descent by decreasing the step size. Even using a smaller constant step size will work.
alpha2 = 0.001;
(sgd_t2, sgd_loss2) = stochastic_gradient_descent(TD, alpha2, num_iters, 10);
plot(gd_t, gd_loss; label="gradient descent, \$\\alpha\$=$alpha");
plot(sgd_t, sgd_loss; label="stochastic gradient descent, \$\\alpha\$=$alpha");
plot(sgd_t2, sgd_loss2; label="stochastic gradient descent, \$\\alpha\$=$alpha2");
legend();
title("Convergence of Gradient Descent and Stochastic Gradient Descent");
xlabel("iterations");
ylabel("total loss");
ylim([0.0,0.02]);
Question: What trade-off is illustrated in this figure?
Another alternative: rather than making the step size smaller, make the gradient estimates more accurate by using a sample size larger than (remember Hoeffding's inequality: as the sample size gets larger the error of the estimates becomes smaller). This is called minibatch SGD.
function minibatch_stochastic_gradient_descent(TD :: LinRegDataset, alpha :: Float64, batch_size :: Int64, num_iters :: Int64, loss_interval :: Int64)
n = length(TD.Xs);
d = length(TD.Xs[1]);
# initialize the parameters to zero
w = zeros(d);
# vector to store loss after t iterations
measurement_times = Float64[0];
loss_at_t = Float64[total_loss(TD, w)];
# run iteratively
for t = 1:num_iters
is = rand(1:n, batch_size);
w = w - alpha * mean([grad_fi(TD, i, w) for i in is]);
if t % loss_interval == 0
push!(measurement_times, t);
push!(loss_at_t, total_loss(TD, w));
end
end
return (measurement_times, loss_at_t)
end
batch_size = 5;
(sgd_t3, sgd_loss3) = minibatch_stochastic_gradient_descent(TD, alpha, batch_size, num_iters, 10);
# also, benchmark the time it takes to run, compared with plain SGD
@time stochastic_gradient_descent(TD, alpha, num_iters, num_iters);
@time minibatch_stochastic_gradient_descent(TD, alpha, batch_size, num_iters, num_iters);
plot(gd_t, gd_loss; label="gradient descent, \$\\alpha\$=$alpha");
plot(sgd_t, sgd_loss; label="stochastic gradient descent, \$\\alpha\$=$alpha");
plot(sgd_t2, sgd_loss2; label="stochastic gradient descent, \$\\alpha\$=$alpha2");
plot(sgd_t3, sgd_loss3; label="minibatch SGD, B = $batch_size, \$\\alpha\$=$alpha");
legend();
title("Convergence of Gradient Descent and Stochastic Gradient Descent");
xlabel("iterations");
ylabel("total loss");
ylim([0.0,0.02]);
Question: What trade-off is illustrated in this figure?