Machine Learning for Data Science (CS4786)

Lecture 14

Gaussian Mixture Model
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K-means: pitfalls

 Of same radius
* Looks for spherical clusters

* And with roughly equal number of points



K-means: pitfalls

* Can we design algorithm that can address these
shortcomings?
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Variance and Radius
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Distance to mean 1 should be smaller than distance to mean 2
as black dot is more likely in cluster 1 than 2
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General Ellipsoid
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General Ellipsoid
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General Ellipsoid
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K-MEANS CLUSTERING

@ For allj € [K], initialize cluster centroids f]Q randomly and set m =1

@ Repeat until convergence (or until patience runs out)
©Q Foreachte{l,..., n}, set cluster identity of the point

" (x;) = argmin |x; — 27|

j
jelK]

© For eachj € [K], set new representative as
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;”: ~m Z Xt
|C] |xte(Af’."
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QO m—m+1



ELLIPSOIDAL CLUSTERING

@ For all j € [K], initialize cluster centroids t and ellipsoids }A:]Q

J
randomly and set m =1
@ Repeat until convergence (or until patience runs out)

@ Foreachte{l,..., n}, set cluster identity of the point

¢"(x¢) = argmin (x; — i‘;-"_l)T ()A:m_l) (x; -t 1)
je[K]

© For eachj € [K], set new representative as
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ELLIPSOIDAL CLUSTERING

@ For allj € [K], initialize cluster centroids f;.) and ellipsoids }A:]Q
randomly and set m =1

@ Repeat until convergence (or until patience runs out)
@ Foreachte{l,..., n}, set cluster identity of the point

c"(x;) = arg[m]m (xe — 17" T (Zm_l) (xt—A;" H
]E

d(Xt, C])

© For eachj € [K], set new representative as
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* Looks for spherical clusters
 Of same radius

* And with roughly equal number of points x



HARD GAUSSIAN MIXTURE MODEL

o For all j € [K], initialize cluster centroids " elhpsmds ZO and

initial proportions 7’ randomly and set m 1

@ Repeat until convergence (or until patience runs out)
©Q Foreachte{l,..., n}, set cluster identity of the point

c"(x¢) = argmin  (x; — f‘}"‘l)T (im_l) (Xt — A;n b - 10g(75}ﬂ_1)
je[K]

© For eachj € [K], set new representative as
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(Gaussian Mixture Models

Each 6 € © is a model.

@ Gaussian Mixture Model

e Each 0 consists of mixture distribution 7t = (714, . . ., Tl ), Means
wi, ..., ug € R? and covariance matrices X1, .. ., 2K

® For each t, independently:
ct~ 1, Xt ~N(U, Z¢,)

m = 0.5 $%
21 A 0.25

Vo @

o — 0.25




Multivariate Gaussian

* [woO parameters:
e Mean p € R?

» Covariance matrix 2. of size dxd

p(as 1, E) = (2m)*2det (S) 2 exp (—§<x TR e m)
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PROBABILISTIC MODELS

@ O consists of set of possible parameters
@ We have a distribution Py over the data induced by each 0 € ©
@ Data is generated by one of the 0 € ©

@ Learning: Estimate value or distribution for 6" € © given data



MAXIMUM LIKELIHOOD PRINCIPAL

Pick 0 € © that maximizes probability of observation

OMmLE = argmaxy o log Po(x1, ..., X1,)
N —’

Likelihood



EXAMPLE: GAUSSIAN MIXTURE MODEL

n K 1 - P
Po(xq, ..., xn)zn(lzln\/(z 31415)2‘2‘@(}3(_(3@—”1') 2i(xs uz)))

Find 0 that maximizes log Pg (x1, . . ., X1)



MLE FOR GMM

Let us consider the one dimensional case, assume variances are 1 and
7T is uniform

n K
log Pe (1,... n)=210g(%;¢2*;1415 exp(—(xt—ui)Z/Z))

Now consider the partial derivative w.r.t. 11, we have:

dlog Po(x1,..n) _ z": —(xt — p1) exp (_(Xt_zul) )
Oy = YK exp (_ (xt—zui)z)

Given all other parameters, optimizing w.r.t. even just y; is hard!

Only thing to take home here is that solving exactly is hard!



MLE FOR GMM

Say by some magic you knew cluster assignments, then

How would you compute parameters ?
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LATENT VARIABLES

@ We only observe xq, ..., x;, cluster assignments cq, . . ., ¢, are not
observed

@ Finding 0 € © (even for 1-d GMM) that directly maximizes
Likelihood or A Posteriori given x1, . . ., X, 1s hard!

@ Given latent variables cq, ..., ¢;,, the problem of maximizing
likelihood (or a posteriori) became easy

Can we use latent variables to device an algorithm?



TOWARDS EM ALGORITHM

@ Latent variables can help, but we have a chicken and egg problem

Given all variables including latent variables, finding optimal
parameters 1s easy

Given model parameter, optimizing/finding distribution over the
latent variables is easy



HARD GAUSSIAN MIXTURE MODEL

e For all j € [K], initialize cluster centroids t r , ellipsoids ZO and

initial proportions 7 randomly and set m 1

@ Repeat until convergence (or until patience runs out)
@ Foreachte{l,..., n}, set cluster identity of the point

" (%) = argmax p(x, 3" L) s ()
]E

© For eachj € [K], set new representative as

cn

2 (x =) (xe —-1")" m'=—
|C | teZC: / n

Xt eCm

QO m—m+1



Pitfall of Hard Assignment
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(SOFT) GAUSSIAN MIXTURE MODEL

@ For allj € [K], initialize cluster centroids f](.) and ellipsoids )A:]Q

randomly and set m =1

@ Repeat until convergence (or until patience runs out)
©Q Foreachte{l,..., n}, set cluster identity of the point

Q' (j) = pOx, B L") x " (j)

© For each € [K], set new representative as

$m Z?zl Qt(j)xt ‘\’im _ Z?:l Qt(j)(xt B f;n)(xt - f;’”)T

Py Q) S Qi)
m _ Z?zl Qt (])

’7'['.
J n

QO m—m+1



