# Machine Learning for Data Science (CS4786) Lecture 14

Gaussian Mixture Model























- Of same radius
- Looks for spherical clusters
- And with roughly equal number of points

 Can we design algorithm that can address these shortcomings?







Distance to mean 1 should be smaller than distance to mean 2 as black dot is more likely in cluster 1 than 2



Distance to mean 1 should be smaller than distance to mean 2 as black dot is more likely in cluster 1 than 2

$$d^2(x, C_j) = \frac{(x - \mu_j)^2}{\sigma_j^2}$$







$$(\mathbf{x} - \mathbf{r}_j)^{\top} \begin{bmatrix} 1/0.5 & 0 \\ 0 & 1/2 \end{bmatrix} (\mathbf{x} - \mathbf{r}_j)$$



$$(\mathbf{x} - \mathbf{r}_j)^{\top} \left[ \sum_{j=1}^{\infty} \mathbf{1} \right] (\mathbf{x} - \mathbf{r}_j)$$



$$(\mathbf{x} - \mathbf{r}_j)^{\top} A(\mathbf{x} - \mathbf{r}_j) \le 1$$



$$(\mathbf{x} - \mathbf{r}_j)^{\top} A(\mathbf{x} - \mathbf{r}_j) \le 1$$





$$(\mathbf{x} - \mathbf{r}_j)^{\top} \Sigma^{-1} (\mathbf{x} - \mathbf{r}_j)$$



$$(\mathbf{x} - \mathbf{r}_j)^{\top} \Sigma^{-1} (\mathbf{x} - \mathbf{r}_j)$$

$$\Sigma = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \mathbf{r}_j) (\mathbf{x}_t - \mathbf{r}_j)^{\top}$$

#### K-MEANS CLUSTERING

- For all  $j \in [K]$ , initialize cluster centroids  $\hat{\mathbf{r}}_j^0$  randomly and set m = 1
- Repeat until convergence (or until patience runs out)
  - ① For each  $t \in \{1, ..., n\}$ , set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \underset{j \in [K]}{\operatorname{argmin}} \|\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1}\|$$

② For each  $j \in [K]$ , set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_i^m} \mathbf{x}_t$$

 $3 m \leftarrow m + 1$ 

#### Ellipsoidal Clustering

- For all  $j \in [K]$ , initialize cluster centroids  $\hat{\mathbf{r}}_{j}^{0}$  and ellipsoids  $\hat{\Sigma}_{j}^{0}$  randomly and set m = 1
- Repeat until convergence (or until patience runs out)
  - ① For each  $t \in \{1, ..., n\}$ , set cluster identity of the point

$$\hat{c}^{m}(\mathbf{x}_{t}) = \underset{j \in [K]}{\operatorname{argmin}} \quad (\mathbf{x}_{t} - \hat{\mathbf{r}}_{j}^{m-1})^{\top} \left(\hat{\Sigma}^{m-1}\right)^{-1} \left(\mathbf{x}_{t} - \hat{\mathbf{r}}_{j}^{m-1}\right)$$

② For each  $j \in [K]$ , set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top}$$

#### Ellipsoidal Clustering

- For all  $j \in [K]$ , initialize cluster centroids  $\hat{\mathbf{r}}_{j}^{0}$  and ellipsoids  $\hat{\Sigma}_{j}^{0}$  randomly and set m = 1
- Repeat until convergence (or until patience runs out)
  - ① For each  $t \in \{1, ..., n\}$ , set cluster identity of the point

$$\hat{c}^{m}(\mathbf{x}_{t}) = \underset{j \in [K]}{\operatorname{argmin}} \quad (\mathbf{x}_{t} - \hat{\mathbf{r}}_{j}^{m-1})^{\mathsf{T}} (\hat{\Sigma}^{m-1})^{-1} (\mathbf{x}_{t} - \hat{\mathbf{r}}_{j}^{m-1})$$

$$d(\mathbf{x}_{t}, C_{j})$$

② For each  $j \in [K]$ , set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\mathsf{T}}$$

 $m \leftarrow m + 1$ 

- Looks for spherical clusters
- Of same radius
- And with roughly equal number of points

Looks for spherical clusters



- Of same radius
- And with roughly equal number of points

- Looks for spherical clusters
- Of same radius
- And with roughly equal number of points

- Looks for spherical clusters
- Of same radius
- And with roughly equal number of points

#### HARD GAUSSIAN MIXTURE MODEL

- For all  $j \in [K]$ , initialize cluster centroids  $\hat{\mathbf{r}}_{j}^{0}$ , ellipsoids  $\hat{\Sigma}_{j}^{0}$  and initial proportions  $\pi^{0}$  randomly and set m = 1
- Repeat until convergence (or until patience runs out)
  - ① For each  $t \in \{1, ..., n\}$ , set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \underset{j \in [K]}{\operatorname{argmin}} \quad (\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1})^{\top} \left(\hat{\mathbf{\Sigma}}^{m-1}\right)^{-1} (\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1}) - \log(\pi_j^{m-1})$$

② For each  $j \in [K]$ , set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top} \qquad \pi_j^m = \frac{|C_j^m|}{n}$$

 $3 m \leftarrow m + 1$ 

#### HARD GAUSSIAN MIXTURE MODEL

- For all  $j \in [K]$ , initialize cluster centroids  $\hat{\mathbf{r}}_{j}^{0}$ , ellipsoids  $\hat{\Sigma}_{j}^{0}$  and initial proportions  $\pi^{0}$  randomly and set m = 1
- Repeat until convergence (or until patience runs out)
  - ① For each  $t \in \{1, ..., n\}$ , set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \underset{j \in [K]}{\operatorname{argmin}} \quad (\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1})^{\top} \left(\hat{\mathbf{\Sigma}}^{m-1}\right)^{-1} \left(\mathbf{x}_t - \hat{\mathbf{r}}_j^{m-1}\right) - \log(\pi_j^{m-1})$$

② For each  $j \in [K]$ , set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^{\top} \qquad \pi_j^m = \frac{|C_j^m|}{n}$$

 $m \leftarrow m + 1$ 

#### Gaussian Mixture Models

#### Each $\theta \in \Theta$ is a model.

- Gaussian Mixture Model
  - Each  $\theta$  consists of mixture distribution  $\pi = (\pi_1, \dots, \pi_K)$ , means  $\mu_1, \dots, \mu_K \in \mathbb{R}^d$  and covariance matrices  $\Sigma_1, \dots, \Sigma_K$
  - For each t, independently:



## Multivariate Gaussian

- Two parameters:
  - Mean  $\mu \in \mathbb{R}^d$
  - Covariance matrix  $\sum$  of size dxd

$$p(x; \mu, \Sigma) = (2\pi)^{d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)\right)$$

### Multivariate Gaussian

- Two parameters:
  - Mean  $\mu \in \mathbb{R}^d$
  - Covariance matrix  $\Sigma$  of size dxd

$$p(x; \mu, \Sigma) = (2\pi)^{d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1}(x - \mu)\right)$$

0.6

0.4

0.2

#### PROBABILISTIC MODELS

- consists of set of possible parameters
- We have a distribution  $P_{\theta}$  over the data induced by each  $\theta \in \Theta$
- Data is generated by one of the  $\theta \in \Theta$
- Learning: Estimate value or distribution for  $\theta^* \in \Theta$  given data

#### MAXIMUM LIKELIHOOD PRINCIPAL

Pick  $\theta \in \Theta$  that maximizes probability of observation

$$\theta_{MLE} = \operatorname{argmax}_{\theta \in \Theta} \log P_{\theta}(x_1, \dots, x_n)$$
Likelihood

#### EXAMPLE: GAUSSIAN MIXTURE MODEL

MLE: 
$$\theta = (\mu_1, \ldots, \mu_K), \pi, \Sigma$$

$$P_{\theta}(x_1, \dots, x_n) = \prod_{t=1}^{n} \left( \sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{(2*3.1415)^2 |\Sigma_i|}} \exp\left(-(x_t - \mu_i)^{\top} \Sigma_i (x_t - \mu_i)\right) \right)$$

Find  $\theta$  that maximizes  $\log P_{\theta}(x_1, \ldots, x_n)$ 

#### MLE FOR GMM

Let us consider the one dimensional case, assume variances are 1 and  $\pi$  is uniform

$$\log P_{\theta}(x_{1,...,n}) = \sum_{t=1}^{n} \log \left( \frac{1}{K} \sum_{i=1}^{K} \frac{1}{\sqrt{2 * 3.1415}} \exp\left(-(x_{t} - \mu_{i})^{2} / 2\right) \right)$$

Now consider the partial derivative w.r.t.  $\mu_1$ , we have:

$$\frac{\partial \log P_{\theta}(x_{1,...,n})}{\partial \mu_{1}} = \sum_{t=1}^{n} \frac{-(x_{t} - \mu_{1}) \exp\left(-\frac{(x_{t} - \mu_{1})^{2}}{2}\right)}{\sum_{i=1}^{K} \exp\left(-\frac{(x_{t} - \mu_{i})^{2}}{2}\right)}$$

Given all other parameters, optimizing w.r.t. even just  $\mu_1$  is hard!

Only thing to take home here is that solving exactly is hard!

#### MLE FOR GMM

Say by some magic you knew cluster assignments, then

How would you compute parameters?

#### MLE FOR GMM

Say by some magic you knew cluster assignments, then



How would you compute parameters?

#### LATENT VARIABLES

- We only observe  $x_1, \ldots, x_n$ , cluster assignments  $c_1, \ldots, c_n$  are not observed
- Finding  $\theta \in \Theta$  (even for 1-d GMM) that directly maximizes Likelihood or A Posteriori given  $x_1, \ldots, x_n$  is hard!
- Given latent variables  $c_1, \ldots, c_n$ , the problem of maximizing likelihood (or a posteriori) became easy

Can we use latent variables to device an algorithm?

#### TOWARDS EM ALGORITHM

• Latent variables can help, but we have a chicken and egg problem

Given all variables including latent variables, finding optimal parameters is easy

Given model parameter, optimizing/finding distribution over the latent variables is easy

#### HARD GAUSSIAN MIXTURE MODEL

- For all  $j \in [K]$ , initialize cluster centroids  $\hat{\mathbf{r}}_{j}^{0}$ , ellipsoids  $\hat{\Sigma}_{j}^{0}$  and initial proportions  $\pi^{0}$  randomly and set m = 1
- Repeat until convergence (or until patience runs out)
  - ① For each  $t \in \{1, ..., n\}$ , set cluster identity of the point

$$\hat{c}^m(\mathbf{x}_t) = \arg\max_{j \in [K]} p(\mathbf{x}_t, \hat{\mathbf{r}}_j^{m-1}, \hat{\Sigma}^{m-1}) \times \pi^m(j)$$

2 For each  $j \in [K]$ , set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{1}{|\hat{C}_j^m|} \sum_{\mathbf{x}_t \in \hat{C}_j^m} \mathbf{x}_t \qquad \hat{\Sigma}^m = \frac{1}{|C_j|} \sum_{t \in C_j} (\mathbf{x}_t - \hat{\mathbf{r}}_j^m) (\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^\top \qquad \pi_j^m = \frac{|C_j^m|}{n}$$

## Pitfall of Hard Assignment



# Pitfall of Hard Assignment



### (SOFT) GAUSSIAN MIXTURE MODEL

- For all  $j \in [K]$ , initialize cluster centroids  $\hat{\mathbf{r}}_j^0$  and ellipsoids  $\hat{\Sigma}_j^0$  randomly and set m = 1
- Repeat until convergence (or until patience runs out)
  - ① For each  $t \in \{1, ..., n\}$ , set cluster identity of the point

$$Q_t^m(j) = p(\mathbf{x}_t, \hat{\mathbf{r}}_j^{m-1}, \hat{\Sigma}^{m-1}) \times \pi^m(j)$$

② For each  $j \in [K]$ , set new representative as

$$\hat{\mathbf{r}}_j^m = \frac{\sum_{t=1}^n Q_t(j)\mathbf{x}_t}{\sum_{t=1}^n Q_t(j)} \qquad \hat{\Sigma}^m = \frac{\sum_{t=1}^n Q_t(j)(\mathbf{x}_t - \hat{\mathbf{r}}_j^m)(\mathbf{x}_t - \hat{\mathbf{r}}_j^m)^\top}{\sum_{t=1}^n Q_t(j)}$$

$$\pi_j^m = \frac{\sum_{t=1}^n Q_t(j)}{n}$$

 $m \leftarrow m + 1$