

Overview

- Recap
- Diffusion model overview
- Forward
- Reverse
- Training Objective

Recall: Data Manifold

- Data distribution **P(X)** defines a manifold of valid images
- Problem: data manifold takes up tiny volume of ambient space
- Naive random samples (e.g. within [0,1]d) are always off manifold
- Solution: Sample from a Gaussian, then learn mapping to and from manifold

Recall: VAE

Back to our AutoEncoder, but this time we make everything **probabilistic!**

How likely would it be to encode x, decode the result, and recover x?

Probabilistic **Encoder** (Gaussian)

Problem: backpropagation through sampling process?

$$\max_{\phi,\theta} \mathbb{E}_{z \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log(p_{\theta}(\mathbf{x}|\mathbf{z}))]$$

Recall: The Reparameterization Trick

$$\mathcal{N}(\mu, \operatorname{diag}(\sigma^2)) = \mu + \sigma \odot \mathcal{N}(0, I)$$

Recall: How do we sample in latent space?

Solution: Regularize all distributions to be close to the standard normal N(0;I).

decoder

KL Divergence (a.k.a. relative entropy)

$$D(p \parallel q) := \underset{x \sim p}{\mathbb{E}} \left[\log \frac{p(x)}{q(x)} \right]$$
Distribution Distribution 2
$$= \underset{x \sim p}{\mathbb{E}} \left[\log \frac{1}{q(x)} - \log \frac{1}{p(x)} \right]$$
Cross Entropy! (constant wrt q)

- non-negative $m{D}(\,p\,\|\,q\,) \geq 0$
- zero means same $D(p \parallel q) = 0 \iff p = q$
- not symmetric
- has many other, uniquely nice properties ...

Cornell Bowers CIS Recall: Evidence Lower Bound (ELBO)

Data likelihood ≥ Reconstruction - KL Divergence

$$\log p(\boldsymbol{x}) \geq \underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})\right]}_{\text{reconstruction term}} - \underbrace{D_{\text{KL}}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z}))}_{\text{prior matching term}}$$
(We are **maximizing** this lower bound.)

If we maximize ELBO, we get closer to max to $P(\mathbf{x})$.

Progress In Generative Modeling

Text-to-Image Diffusion Models

Diffusion Overview

Denoising Diffusion Models

Denoising diffusion models consist of two processes:

- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising

Diffusion Models

We define a mapping to Gaussian noise (forward process)
Want to **learn the reverse mapping to generate data** (reverse process)

Forward Process: high level idea

Forward Process (think encoder)

Destroy by successively adding Gaussian noise (Markov Chain)

Training Sample

Gaussian Noise (distribution)

Markov Chain Implications

 $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ Tor F?

Reverse Process: high level idea

Putting it together

Forward Process (think encoder)

Destroy by successively adding Gaussian noise (Markov Chain)

Training Sample

Reverse Process (think decoder)

(distribution)

Learn to recover original image (i.e. learn to reverse the Markov Chain)

Diffusion Sampling

Different draws of initial noise lead to diverse of outputs

Forward Process

Forward Process Overview

- ullet Destroys original image ${f x}_0$ by successively adding Gaussian noise
- ullet Desired outcome: At step T, ${f x}_T$ is a pure Gaussian noise
 - o i.e. the distribution we map the data manifold to

No training yet!!!

Details: Forward Process

Start from \mathbf{x}_0 sampled from some real-world distribution of images For timestamps until T:

 \mathbf{x}_t sampled from normal distribution conditioned on \mathbf{x}_{t-1} $q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1-eta_t}\mathbf{x}_{t-1},eta_t\mathbf{I}) \qquad \{eta_t \in (0,1)\}_{t=1}^T$

$$q(\mathbf{x}_T) \approx \mathcal{N}(0, \mathbf{I})$$

noise schedule: how fast we move towards Gaussian noise

$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t \mathbf{I})$

Details: Forward Process

Can we extend this to sampling \mathbf{x}_t in a closed form?

Let
$$\alpha_t \coloneqq 1 - \beta_t$$

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{\alpha_t}\mathbf{x}_{t-1}, (1-\alpha_t)\mathbf{I})$$

Re-parametrization trick!

$$\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_{t-1} + \sqrt{1 - \alpha_t} \boldsymbol{\epsilon}_{t-1}$$

Cornell Bowers C¹S

Details: Forward Process

Inductively, we can say

indictively, we can say
$$\mathbf{x}_t = \sqrt{\alpha_t}\mathbf{x}_{t-1} + \sqrt{1-\alpha_t}\boldsymbol{\epsilon}_{t-1}$$

$$= \sqrt{\alpha_t\alpha_{t-1}}\mathbf{x}_{t-2} + \sqrt{1-\alpha_t\alpha_{t-1}}\bar{\boldsymbol{\epsilon}}_{t-2} \text{ Merged noise. epsilon is still } \sim \mathcal{N}(\mathbf{0},\mathbf{I})$$

$$= \dots$$

$$= \sqrt{\bar{\alpha}_t}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t}\boldsymbol{\epsilon} \qquad \bar{\alpha}_t = \prod_{t=0}^t \alpha_t$$

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0, \mathbf{I})$$

Details: Forward Process

Can sample \mathbf{x}_t in closed-form as $q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$

$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \bar{\alpha}_t \in (0, 1)$$

- Define the noise schedule in terms of $\bar{\alpha}_t \in (0,1)$
 - Some monotonically decreasing function from 1 to 0
- Cosine Noise schedule:

$$\bar{\alpha}_t = \cos(.5\pi t/T)^2$$

Figure 5. $\bar{\alpha}_t$ throughout diffusion in the linear schedule and our proposed cosine schedule.

Nichol, Alexander Quinn, and Prafulla Dhariwal. "Improved denoising diffusion probabilistic models." International conference on machine learning, PMLR, 2021.

Reverse Process

Reverse Process Overview

- "Learn to reverse what we just destroyed"
 - Learn time reversal of Markov Chain; we **train a model for this**
- ullet Desired outcome: some ${f x}_0$ close to the original data distribution

Details: Reverse Process

Start from
$$q(\mathbf{x}_T) = \mathcal{N}(0, \mathbf{I})$$

Ideally, sample from reversed conditional distribution $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$

How to compute
$$q(\mathbf{x}_{t-1}|\mathbf{x}_t)$$
 ?

$$\mathbf{x}_T$$
 \mathbf{x}_{T-1} \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0

Details: Reverse Process

How to compute
$$q(\mathbf{x}_{t-1}|\mathbf{x}_t)$$
 ?

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t) = \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1})q(\mathbf{x}_{t-1})}{q(\mathbf{x}_t)}$$

$$\mathbf{x}_T$$
 \mathbf{x}_{T-1} \mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0

Details: Reverse Process

 \mathbf{X}_{T-1}

Recall: forward $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I})$ $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is **not tractable**. Is $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ tractable?

 \mathbf{X}_1

 \mathbf{x}_0

 \mathbf{X}_T

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)}$$

 \mathbf{X}_2

Key Idea

Cornell Bowers C·IS

 \mathbf{x}_T

 \mathbf{x}_{T-1}

We introduce a generative model to approximate the reverse process $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ $p(\mathbf{x}_T) = \mathcal{N}(\mathbf{0},\mathbf{I})$

$$p_{m{ heta}}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mu_{m{ heta}}(\mathbf{x}_t,t),\sigma_t^2\mathbf{I})$$
 $\mathbb{E}_{q(m{x}_t|m{x}_0)}\left[D_{\mathrm{KL}}(q(m{x}_{t-1}|m{x}_t,m{x}_0)\parallel p_{m{ heta}}(m{x}_{t-1}|m{x}_t))
ight]$ Learning Objective!

 \mathbf{X}_2

 \mathbf{x}_1

 \mathbf{x}_0

Diffusion Training Objective

Training

Find the model that maximizes the likelihood of the training data

i.e. same as VAEs, variational inference; approximate the true posterior

 $\max \log p(x)$

Training Objective

- Bound the likelihood with the ELBO
 - Exactly like VAEs

$$\log p(\boldsymbol{x}) \geq \underbrace{\mathbb{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})\right]}_{\text{reconstruction term}} - \underbrace{D_{\text{KL}}(q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \parallel p(\boldsymbol{z}))}_{\text{prior matching term}}$$

$$\log p(\boldsymbol{x}) \geq \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{1}|\boldsymbol{x}_{0})}\left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_{0}|\boldsymbol{x}_{1})\right]}_{\text{reconstruction term}} - \underbrace{D_{\text{KL}}(q(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) \parallel p(\boldsymbol{x}_{T}))}_{\text{prior matching term}} - \sum_{t=2}^{T} \underbrace{\mathbb{E}_{q(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})}\left[D_{\text{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}))\right]}_{\text{denoising matching term}}$$

Parameterizing the Denoising Model

Simplifying KL Divergence to MSE of means, as distributions are Gaussians with same variance!

Simplifying Bayes Rule...

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{x}_0)q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)}$$

Re-parametrize $\mu_{\theta}(x_t,t)$

Loss is MSE of actual to predicted loss!

What Network Architecture to Use For ϵ_{θ} ?

People often use U-Nets with residual blocks and self-attention layers at low resolutions

Has same input and output image dimensions

Time representation: sinusoidal positional embeddings

Inject time embedding throughout the network (e.g. additive positional embedding)

← Sample original image from image distribution

← Sample random time step uniformly

Training Algorithm

Repeat until convergence

$$1.~\mathbf{x}_0 \sim q(\mathbf{x}_0)$$

$$(\mathbf{z}_0)$$

$$(\mathbf{x}_0)$$

$$2.\ t \sim U\{1,2,\ldots,T\}$$

3.
$$\epsilon \sim \mathcal{N}(0,1)$$

4. Optimizer step on
$$L(\theta) = \mathbb{E}_{t,\mathbf{x}_0,\epsilon}[||\epsilon - \epsilon_{\theta}(\mathbf{x}_t,t)||^2]$$

$$\text{ on } L(\theta) = \mathbb{E}_t$$

← Sample Gaussian noise

Sampling Algorithm

$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 ϵ Sample pure Gaussian noise

For
$$t = T, T - 1, \ldots, 1$$

$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) ext{ if } t > 1, ext{else } \mathbf{z} = \mathbf{0}$$
 $\overset{ullet}{}_{ ext{apply to image}}$

$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$
 \leftarrow Predict noise applied to image and remove that noise

Return \mathbf{x}_0

$$p_{oldsymbol{ heta}}(oldsymbol{x}_{t-1}|oldsymbol{x}_t) = q(oldsymbol{x}_{t-1}|oldsymbol{x}_t, \mathbf{x}_{ heta}(\mathbf{x}_t, t))$$

Generative Modeling

Target Distribution

Image Source

Recap

- Can bound the likelihood of observed data (i.e. the evidence) with the Evidence Lower Bound (i.e. the ELBO)
- Can learn generative models by maximizing the ELBO
 - o VAEs, hierarchical VAEs, Diffusion models
- Learning objective decomposed to each timestep
 - Can be made extremely deep!
 - Can focus on higher noise levels to improve perceptual quality!
- Limitation:
 - Can require many sampling steps for good quality