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Recall;: Data Manifold
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Data distribution P(X) defines a manifold of valid images

Problem: data manifold takes up tiny volume of ambient space

Naive random samples (e.g. within [0,1]%) are always off manifold
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We want to sample from the elusive
Image Manifold

Solution: Sample from a Gaussian, then learn mapping to and from manifold

i

o i e
) o 7

T
i e

We can sample from a
Gaussian Distribution
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Recall: VAE

X Z X’
Back to our AutoEncoder, encod% ecogy,
but this time we make el ’oe(X’/Z)

everything probabilistic!

ngaox E gy (z)x) 108 (Do (%]2))]

How likely would it be to encode x,
decode the result, and recover x?




Cornell Bowers CiIS

Probabilistic Encoder (Gaussian)
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Problem: backpropagation
through sampling process?
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Recall: The Reparameterization Trick

N (u,diag(c®)) = p+o ©N(0,1)

L] L]
sample W ——1\ + |—
2 ~ N (p, diag(c?)) = =
] 0 (O = T /

[]
L] % [ DD] o % O,




Cornell Bowers CIS
Recall: How do we sample in latent space?

Solution: Regularize all distributions to be close to the standard normal N(0;l).

maximize

(2)

Eqy(efo) 08 D0 (2]2)] — Dic.(a0(212) || p(2))

reconstruction term prior matching term
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KL Divergence

D(pllq):= E [log pe):

/ \ T~Pp Q(x)j

Distribution  Distribution

1 = E [log
T~ q()

log Zﬁ}

Cross Entropy! (constant wrt q )

non-negative D(p|q) >0

zeromeanssame D(pllq) =0 <= p=g¢q
not symmetric

has many other, uniquely nice properties ...




Comell BowersC1S ~ Recall: Evidence Lower Bound (ELBO)

Data likelihood > Reconstruction — KL Divergence

0gp(@) > Eqy(eiey logpo(212)] — Dic(ag(212) || p(2))

v B g
reconstruction term prior matching term

(We are maximizing this lower bound.)

If we maximize ELBO, we get closer to max to P(x).

P(X)
ELBO

[Calvin Luo https://arxiv.org/abs/2208.11970]




Cornell Bowers CiIS

GAN: Adversarial ’ Discriminator @ Generator
5 s X X z
training D(x)
VAE: maximize X Encoder - Decoder
variational lower bound gy (2[x) po(x|z)
Diffusion models: i k R
Gradually add Gaussian X0 X1 Xo| e
- —— - = - - - - —— - = - - -

noise and then reverse

https://miro.medium.com/v2/resize:fit: 1400/format:webp/1*_5GpdejeOvt61ew4aPtT_g.png
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Progress In Generative Modeling

VAEs, 2013 GANs, 2014 PixelCNN, 2016 BigGAN, 2019 Imagen, 2022
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Text-to-Image Diffusion Models

g “Mf’“!
e

A heart made of wood

a robot cooking dinner in the kitchen

an old man with green eyes and a long

A teddy bear and a stuffed raccoon
sitting on a wooden chair side by side
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The oil painting shows a cow standing

near a tree with red leaves
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A traditional tea house in a tranquil garden
with blooming cherry blossom trees

A painting of an adorable rabbit siing
on a colorful splash

grey beard

an afrofuturist lady wearing gold jewelry a black basketball shoe with

A cool orange cat wearing sunglasses playing a
a lightning bolt on it

guitar with a group of dancing bananas

Dai, Xiaoliang, et al. "Emu: Enhancing image generation models using photogenic needles in a haystack." arXiv preprint arXiv:2309.15807 (2023).
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Diffusion Overview




Cornell Bowers C1S
Denoising Diffusion Models

Denoising diffusion models consist of two processes:

e Forward diffusion process that gradually adds noise to input
e Reverse denoising process that learns to generate data by denoising

Forward Process (fixed)

Reverse Process (generative)
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Diffusion Models

We define a mapping to Gaussian noise (forward process)
Want to learn the reverse mapping to generate data (reverse process)
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Forward Process: high level idea

>

Forward Process (think encoder)
Destroy by successively adding Gaussian noise
(Markov Chain)

Training
Sample

XT

Gaussian Noise
(distribution)
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Markov Chain Implications

Direction of
dependence

q(X¢|X¢—1,%X0) = q(X¢|X¢—1) TorF?

q(x¢—1|%¢,X0) = q(X¢—1]%;) TorF?
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Reverse Process: high level idea

X2 X3 XT
Training -« Gaussian Noise
Sample Reverse Process (think decoder) (distribution)

Learn to recover original image
(i.e. learn to reverse the Markov Chain)
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Putting it together

Training
Sample

>

Forward Process (think encoder)
Destroy by successively adding Gaussian noise
(Markov Chain)

Reverse Process (think decoder)
Learn to recover original image
(i.e. learn to reverse the Markov Chain)

XT

Gaussian Noise
(distribution)
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Diffusion Sampling

Different draws of initial noise lead to diverse of outputs
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Forward Process
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Forward Process Overview

e Destroys original image X by successively adding Gaussian noise

e Desired outcome: At step T, X7 is a pure Gaussian noise
o i.e.thedistribution we map the data manifold to

No training yet!!!
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Details: Forward Process

Start from Xo sampled from some real-world distribution of images
For timestamps until T:
X sampled from normal distribution conditioned on X;_1

q(x¢x1-1) = N (/1 — Bexe_ 1, B¢1) {B: € (0,1)}/,

N(O I) noise schedule: how fast we move
’ towards Gaussian noise

q(xT) ~




Cornell Bowers CIS

Details: Forward Process
Can we extend this to sampling X¢ in a closed form?

Let o == 1— 3 q(x¢|xi—1) = N(Varxs—1, (1 — oy)I)

q(x¢[x¢-1) = N(\/1 — Bixs_1, Bi])

Re-parametrization trick! X; = v/ ouXi—1 + V1 — o€

€Er—_1 N(O, I)
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Details: Forward Process

Inductively, we can say

Xt = /Xy 1+\/1—04t€t 1

= oo _1X—9 + \/1 — Q1€ 9

— O_étX() + AV 1 — o‘zte

q(x¢|x0) = N(

X0

t
p = H 87
1=1

[)

Merged noise.

epsilon is still ~ N (0, I)




Cornell Bowers CiIS
Details: Forward Process

Can sample x4 in closed-form as q(x¢|x9) = N (v aixq, (1 — a;)I)

x: = vVayxo + V1 — age, e ~ N(0,I), a; € (0,1)

q(%4|%0)
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Aside: Noise Schedules

e Define the noise schedule in

terms of a; € (0,1)
o  Some monotonically decreasing
function from 1to 0

e Cosine Noise schedule:

&y = cos(.5mt/T)?

x; = vVauxo + V1 — age,e ~N(0,I), a; € (0,1)

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

Figure 5. & throughout diffusion in the linear schedule and our
proposed cosine schedule.

Nichol, Alexander Quinn, and Prafulla Dhariwal. "Improved denoising diffusion probabilistic models."
International conference on machine learning. PMLR, 2021.
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Reverse Process
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Reverse Process Overview

e '"Learntoreverse what we just destroyed"
o  Learn time reversal of Markov Chain; we train a model for this

e Desired outcome: some X close to the original data distribution




The forward trajectory
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Sohl-Dickstein et al., 2015
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https://arxiv.org/abs/1503.03585

Cornell Bowers CiIS
Details: Reverse Process

Start from ¢q(x7) = N(0,I)

Ideally, sample from reversed conditional distribution q(x¢—1|%x¢)

How to compute g(x:—1|x¢) ?
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Details: Reverse Process

How to compute q(x:—1|x¢) ?

q(x¢|x¢—1)q(x¢-1)

C](Xt—1|Xt) =

q(X¢)
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Details: Reverse Process

Recall: forward(® /&0 + vT = e, e ~ N(0,T)

q(x¢|x0) = N (Vauxg, (1 — ay)I)

g(x¢_1|%¢) Isnottractable. s q(x;_1|X¢, Xo)tractable?

l.e. Can we reverse the forward process given the original data?

Q(Xt—1|Xt7XO) —

Q(Xt|Xt—1a XO)C](Xt—l ’XO)

q(x¢[%0)




Cornell Bowers C1IS Recall: forward x¢ = Vagxo + V1 — age, e ~ N(0,1)
Details: Reverse Process q(x|x0) = N auxo, (1 — ay)I)

q(X¢—1|Xt,X0)is tractable
Can reverse the forward process given the original data!

Problem: Don’t have any “original data X0 ” during inference

‘ We have X during training; train a generative model ‘

Q(Xt—l |Xt7 XO)
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Key Idea

We introduce a generative model to approximate the reverse process C](Xt—l ’Xt, XO)

p(xr) = N(0,I)

po(xi—1|xt) = N po(xt,t), atQI) Eq(zi|wo) [PxL(q(xi—1]|T¢, To) || Po(Ti—1]|Tt))]

Learning Objective!

Po(xt—llxt)
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Diffusion
Training Objective
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Training

Find the model that maximizes the likelihood of the
training data

i.e. same as VAEs, variational inference; approximate the true posterior

maxX log p(x)
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Training Obijective

e Bound the likelihood with the ELBO
o Exactly like VAEs

1ng(w) > [Eq¢(z|m) [logpe(w|z)] -

pKL(Q¢(z|$) | p(Z)Z

¢ (2|T)

. i
prior matching term

WV
reconstruction term

331 ‘ZU())
po(To|x1)

p9($1|332)

q(z2|w1)

log p(z) > Eq(as|zo) [logpa(@o|®1)] — Dxr(g(zr|20) || p(7))
reconstru‘crtlon term

prior matchlng term

http://cs231n.stanford.edu/slides/2023/lecture_15.pdf

C](xT\xT—Q

po(rT_1|TT)
T
Z[EQ(mtlmO) [Dcw(g(@i—1|2e, o) || po(@i—12:))]

denoising matchlng term




€ (Xt, t)
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Parameterizing the Denoising Model

T
3" Eqgean) Dx(a(@i-1lze, o) || po(@e1|0))]

t=2 denoising ma thing term . L .
Simplifying KL Divergence to MSE of
g | L el 4o means, as distributions are Gaussians
q {T‘?||Nt(xtaxo) — po(x, )] } + with same variance!
X 8 Simplifying Bayes Rule...
ﬁf(xf,xo) = (Xr - l = 6)
1— 5 V1-—ay q(Xt—1|Xt,Xo) . Q(Xt|xt—17 XO)Q(Xt—1|X0)
q(x¢[x0)
po(xe,t) = 11 (xf = 1ﬁ' = ff)(xht)) _
Ve Y Re-parametrize [lg (a:t, t)

L(0) = ]Et,xO,e[“e — €g(xt, t)Hz] Loss is MSE of actual to predicted loss!

http://cs231n.stanford.edu/slides/2023/lecture_15.pdf
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What Network Architecture to Use For €g ?

People often use U-Nets with residual blocks and self-attention layers at low resolutions

Has same input and output image dimensions

Time Representation 1' I

Fully-connected
Layers

Time representation: sinusoidal positional embeddings

Inject time embedding throughout the network (e.g. additive positional embedding)

http://cs231n.stanford.edu/slides/2023/lecture_15.pdf




Cornell Bowers CiIS X, = /@Xo + V1 — aze,e ~ N(0,1)
Training Algorithm

Repeat until convergence

1. xg ~ q(xo) « Sample original image from image distribution
2.t ~U{L2,...,T} ¢« Sample random time step uniformly
3.e ~ _/\/(0, 1) ¢« Sample Gaussian noise

4. Optimizer step on L(6) = Eyx, ¢[||e — €o(x¢, t)]||*]

¢ Model predicts noise applied at time step t and
calculate loss
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Sampling Algorithm

X7 N(O, I) ¢ Sample pure Gaussian noise

Fort=T7T,T—-1...,1
' i Sample Gaussian noi
2~ N(0,I)ift > Lelsez=0 5 0 nimme

1
Xt—1 = \/1047 (Xt — mee(xt,t)) + OtZ ¢ Predict noise applied to

image and remove that noise
Return x| N

pO(mt—l |513t) = Q(wt—l |€Bt, XG(Xta t))
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Generative Modeling

N

] i
1 1
VAE: maximize \| x |1_,| Encoder dz | Decoder <
variational lower bound | : q4(2[x) ' i po(x|z)
1 1 [ 000 ~---
| | it
1 1 H
| | |
Diffusion models: i X0 i X1 %o . 1
Gradually add Gaussian i < --- le--1 Cle-------- “---——- s

noise and then reverse | ' !
I 1
1 1 |\
| |
1 1 o=

GAN: Adversarial / i | _|Discriminator ! Generator ,
;s X X e x
training . : D(x) 1 | G(z)

| |
I 1
1 1

Target Distribution

Image Source

-

VAEs typically have a smaller
latent dimension, while
diffusion models do not

Latent Distribution



https://pub.towardsai.net/diffusion-models-vs-gans-vs-vaes-comparison-of-deep-generative-models-67ab93e0d9ae
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Recap

e Can bound the likelihood of observed data (i.e. the evidence) with the
Evidence Lower Bound (i.e. the ELBO)
e (Can learn generative models by maximizing the ELBO
o VAEs, hierarchical VAEs, Diffusion models

e Learning objective decomposed to each timestep

o Can be made extremely deep!
o Can focus on higher noise levels to improve perceptual quality!

e Limitation:
o Can require many sampling steps for good quality




