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Discriminative Models
typically supervised

Goal: model p(Y‘X)

from samples of p(X,Y)
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Generative Models
unsupervised

Goal: model p(X)

from samples of p(X)

Examples:
e GANSs + variants
e Normalizing Flow Models
e \ariational Autoencoders
o Diffusion Models
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Discriminative Models
typically supervised

Goal: model p(Y‘X)

from samples of p(X,Y)

0O000
XEew}os
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Generative Models
(Conditional generation)

Goal: model p(XlY)

from samples of p(X,Y)

Examples:
e GANSs + variants
e Normalizing Flow Models
e \ariational Autoencoders
o Diffusion Models




Cornell Bowers CIS Big Picture

New (fake) data drawn

Data sampled from from Q(x)

true (but elusive) P(X) Learn approximate

data distribution

Q(X)=P(X)

'
S

b
b b
b b
L b
e b
ab
aa
b e
a4
24
-
38
38
35

WWWWEWENNP Y

2
a
rl
2
2
3
3
3
3

WWWERWENNNN

R R R R EEEEEFEF N NN
WWWWEWEEEP PP

VNS LLRLL22DoDD
NOAARPPPP

YYD D000
NYOYYLLLLoo 000

WO WP PP




Cornell Bowers CiIS

Data Manifold

OR
E/

Data distribution P(X) defines a manifold of valid images

Problem: data manifold takes up tiny volume of ambient space

Naive random samples (e.g. within [0,1]%) are always off manifold

Solution: Sample from a Gaussian, then learn mapping to and from manifold

< GAN
< VAE >

We want to sample from the elusive We can sample from a
Image Manifold Gaussian Distribution
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GAN: Adversarial ’ Discriminator @ Generator
5 s X X z
training D(x)
VAE: maximize X Encoder - Decoder
variational lower bound gy (2[x) po(x|z)
Diffusion models: i k R
Gradually add Gaussian X0 X1 Xo| e
- —— - = - - - - —— - = - - -

noise and then reverse

https://miro.medium.com/v2/resize:fit: 1400/format:webp/1*_5GpdejeOvt61ew4aPtT_g.png
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Timeline

- VAEs preceded GAN:S.
- In fact, GANs were motivated to fix some of the problems of VAEs.
- VAEs are important to understand Diffusion Models

VAEs GANs Diffusion Models
[Kingma and Welling] [Goodfellaetal.] [Sohl-Dickstein et al. ]

| | |
2013 2014  Time 2015
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Dimensionality Reduction

[ ]
Data is typically from a low dimensional distribution [] (]
embedded in a much higher dimensional ambient space. ¢ % A
D o -
Want to map images &L € R []
to low-dimensional 2 & R
Often for the purposes of
e visualization Question: what properties
e extracting important features should this mapping have?

(for downstream tasks)
e representing meaningful
relationships between samples
e In this lecture sampling!
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Principal Component Analysis (PCA)

e assumption: data manifold is a subspace X

e z=W(x—pu) (alineartransformation)

e x~ W'z 4y (reconstruction) ?
e capture as much variance as possible

matrix XX’

https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d/

nxd

Can be computed directly with linear algebra:
take leading eigenvectors of (centered) scatter
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Autoencoders [Kramer, 1991]
Non-linear dimensionality reduction.

Information /

Bottleneck XL
[ ] % [ ]
- u -
1 e(x) % d(z) -
[ ] [ ]
1 encod®! | Yecogg,

latent variable

Question: What loss function should we use to learn () and d()?
What happens if e(x) and d(z) are both linear functions?
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Autoencoders [Kramer, 1991]

Typical loss: Squared loss, or absolute loss

Information
Bottleneck

XL % L

oncode! Q"9Co

latent space

Remember cycle
consistency?
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ldea: Sampling from a trained Autoencoder

® GANSstrain the decoder with a
discriminator
VAEs ensure quality with

o Reconstruction loss
o  KLregularization (in a few slides)
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ldea: Sampling from a trained Autoencoder

CIEIET

B
=

o
o
[

deCOO'er -

Feed in noise, sampled ‘:.0‘,"
from some distribution P(z) l,.\w

GANSs train the decoder with a
discriminator
VAEs ensure quality with

o Reconstruction loss
o  KLregularization (in a few slides)

Crucial insight:
We can amend latent space
so that it is easy to sample
from it.

14
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Autoencoder trained on MNIST:
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Figure 3-8. Plot of the latent space, colored by digit

20

M

latent s pace a

Naive representation (without any special
effort), not favorable:

lots of empty space

no symmetries between digit
representations

Not easy to sample in latent space
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Naive sampling in latent space does not work

new image?

IE/ = d( noise )

16
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Some Fundamentals
of probability and information

~ Building Blocks:

e Conditional and marginal probabilities
e Surprisal / Negative Log Likelihood
e Relative Entropy / KL Divergence

17
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Conditional and Marginal Probabilities

p(X,Y) = p(Y|X)p(X)

p(X) = / p(X, y)dy
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Equation (2): Quick 60s Stats Puzzle

Prove that for any random variable X,Z.

Hint: Later this rule will come in handy. Remember it as “Equation (2)".

19
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Equivalences

surprisal Negative log-likelihood

SN E———

max log (pg(x))

log-likelihood

20
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KL Divergence
A px |
D(plq):= E [1og—()
/ \ T~Pp Q(x)j

reality model

(e.g., dataset) . " |: lOg
T~p q (ZL‘ )
|
Cross Entropy!

non-negative D(p|q) >0

Zero means same D(pH q) =0 < p=gq

not symmetric

has many other, uniquely nice properties ...

log Zﬁ}

( constant; does not
depend on model q )

21
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KL Divergence

Justin’s Coin Varsha’s Coin

Question:
Is it just as easy to mistake the output of Justin’s
coin for that of Varsha’s coin, as vice versa?

[ link to visualization ]



https://twitter.com/i/status/1303741288911638530
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~ Building Blocks:

Conditional and marginal probabilities
Surprisal / Negative Log Likelihood
Relative Entropy / KL Divergence

VAEs,
Step 1. Make AutoEncoder probabilistic

23
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Reconstruction Loss,

using surprisal X v X’

Back to our AutoEncoder, encod% ecogy,
but this time we make el ’Oe(X’/Z)
everything probabilistic!

ngaox E gy (z)x) 108 (Do (%]2))]

How likely would it be to encode x,
decode the result, and recover x?

24




Cornell Bowers CiIS

So far we have used the -
softmax to get )
probabilities...

de CO de[‘

n
Q“’&Z\)Q By (X 1z )

Softmax gives us a
multinomial distribution.
But our latent space is not

discrete i.e. {1, ..., c},

but continuous, R!

Gaussian would be better ...

QL0000

25
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Probabilistic Encoder (Gaussian)

3
)
Q
-

Problem: backpropagation
through sampling process?

rgaox E~q, (zlx) [10g (Po (x|2))]

variance

)

4

(] % sample <

. O 2~ N(p, diag(o®)) | L[4

ml - (] 0 (O -

- ] 0O [ = ] =

17 ncoder [] [] ] [] Decod
en X) ] 'O(X’ er
A log(0?) 12)

E%\
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The Reparameterization Trick

N (u,diag(c®)) = p+o ©N(0,1)

L] L]
sample W ——1\ + |—
2 ~ N (p, diag(c?)) = =
] 0 (O = T /

[]
L] % [ DD] o % O,

27
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The Reparameterization Trick

gradients /

o = exp(s) —>®

CIEEEEE &
M

Z=Uu-+€o
[ ]
+ I d
[]
deCO
'Oe()(’/zjr

&\

L]
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Probabilistic decoder (Gaussian)

v
L [
% z =+ eexp(s
= [] [ ]
- € d
2l ~ma P
code coq,
GSQ(Z\)Q g Po(X ’/zjr

29
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Probabilistic decoder (Gaussian)

T X =

[ = z =+ eexp(s [

[ (] o [

g 4| OX ~N(d@), )
w m w

% def % de % \

nco Coq
eqq,(Z\)Q I;' Po(X ’/zjl’ Py(x|2) ~ exp (_ (x' - d29(z))2>

Igaéx IE‘:"zwqcp(z|x) [lOg (p9 (Xlz))]: I{bllen EZNQ¢(Z|X) [(X — dy (Z))2]

Plugging the output distribution into the reconstruction loss, results in the squared loss. ,,
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Step 2: How do we sample in latent space?

How can we sample, if each sample has its own latent distribution?

feed decoder
Gau53|an) noise?
<:::::> ﬁﬁ%

OO

d

de CO de['

I/ s
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Step 2: How do we sample in latent space?

Solution: Regularize all distributions to be close to the standard normal N(0;l).

maximize

D(2)

Eqy(efo) 08 D0 (2]2)] — Dic.(a0(212) || p(2))

reconstruction term prior matching term

32
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Step 2: How do we sample in latent space?

Solution: Regularize all distributions to be close to the standard normal N(0;l).

maximize

(2)

Eqy(efo) 08 D0 (2]2)] — Dic.(a0(212) || p(2))

reconstruction term prior matching term

33




Cornell Bowers CIS
Step 2: How do we sample in latent space?

Solution: Regularize all distributions to be close to the standard normal N(0;l).

maximize

(2)

Eqy (efoy (108 20 (@[2)] — Dic (9 (212) || p(2))

Vo ~

%
Sample from p(z) L] d

e —  E

:\\ﬁ

\g @

reconstruction term prior matching term

I/ s
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Cornell Bowers C1S  Evidence Lower Bound (ELBO)

log p(x) = log p(x) / ¢ (z|x)dz

. / 4o (2|z) (log p(x))dz

— Eq¢(z|w) [lng(.’D)]
(=, Z)]

p(z|x

= Egy(zl2) |log

p\x

= log (

p(z|x
—E

g (z|z) |10

=L

g (z|z) |108

>[E

g (z|z) |10

)
z)qqs(zlw)]

)4 (z|)
p(z, z) |
g (2|x)
p(x, )
g (2|T)
p(z, z) |
9 (z|T) |

qu(zlw)]
+E,. (2le llo il i
94 (2z|x) g p(z|a:)

+ Dk1(qe(2|) || p(2|Z))

(Multiply by 1 = /q¢(z|m)dz)
(Bring evidence into integral)
(Definition of Expectation)
(Apply Equation 2)

%(ZIw))

(Multiply by 1 =
qp(z|z)

(Split the Expectation)
(Definition of KL Divergence)

(KL Divergence always > 0)
35

[Calvin Luo https://arxiv.org/abs/2208.11970]




Cornell Bowers C1S  Evidence Lower Bound (ELBO)

p(x, z)
9¢(z|T)

] = Eq, (2|2) [log pg(m|z)p(z)] (Chain Rule of Probability)

E..(z1z) |lOg
q¢(2|) [ q¢(z|a:)

?) ] (Split the Expectation)
q¢(z|)
= Eg,(2|) log pe(x|2)] — Dk1(ge(2|x) || p(2)) (Definition of KL Divergence)

v B g
reconstruction term prior matching term

= Egy(2lx) [logpo(x|2)] + Eqy (2)) llog

(We are maximizing this lower bound.)

If we maximize p,(x|z) and minimize the D, we get close to P(x).

[Calvin Luo https://arxiv.org/abs/2208.11
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Examples of VAE generated images
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a much nicer space...
can smoothly interpolate digits in
a meaningful, digit-y kind of way
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Cornell Bowers CiIS . . . .
dimensions in latent space correspond to meaningful

a much nicer space  concepts, like sentiment and orientation
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Back to MNIST: Visualizing latent space again

VAE Latent space, note the distribution is centered, and each digit has an equal portion
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The Biggest Drawback of VAEs

e Out of the box, generated images can be blurry.

Question: Why? How do
GANSs fix this problem?

VAE v. GAN

https://borisburkov.net/2022-12-31-1/

41



https://www.researchgate.net/figure/Images-generated-by-a-VAE-and-a-DCGAN-First-row-samples-from-a-VAE-Second-row-samples_fig9_305654682
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Hierarchical VAEs

The generative process is modeled as a Markov chain, where each latent Z, IS
generated only from the previous latent z , ,

p(x|z1) p(21]22) p(zr-1|21)
Q00 o

q(z1]x) q(22|21) q(z7|27-1)
42
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Summary

- Generative Image models learn a mapping from the Standard Normal

Gaussian to the Image Manifold
- GANSs learn this through a discriminator.
- VAEs learn it through variational autoencoders

- AutoEncoders learn to compress and reconstruct data

- VAEs make these AutoEncoders probabilistic
- Minimize the reconstruction loss
- Latent space is sampled from Gaussian distributions
- Sampling is made differentiable with the Reparameterization Trick
- Deviations from the Prior (Standard Normal Gaussian) is penalized by KL divergence

- The ELBO is a lower bound of P(X)

- Maximizing the ELBO, and minimizing the KL divergence makes P(x|z) close to P(x)

43




