
Deep Learning
Week 7: The Variational Auto-Encoder (VAE)
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Discriminative Models
unsupervised 

Generative Models
typically supervised 

Goal: model
from samples of p(X,Y)

Goal: model

(* so that we can predict
  most likely labels )

Examples:
● GANs + variants
● Normalizing Flow Models
● Variational Autoencoders

○ Diffusion Models

softm
ax

(* so that we can
  generate artificial/new data)

from samples of p(X)
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Discriminative Models
(Conditional generation)

Generative Models
typically supervised 

Goal: model
from samples of p(X,Y)

Goal: model
from samples of p(X,Y)
(* so that we can
  generate artificial/new data)

(* so that we can predict
  most likely labels )

Examples:
● GANs + variants
● Normalizing Flow Models
● Variational Autoencoders

○ Diffusion Models

softm
ax
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Data sampled from 
true (but elusive) P(X)

New (fake) data drawn 
from Q(x)

Q(X)≈P(X)

Learn approximate 
data distribution

Big Picture
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Data Manifold
- Data distribution P(X) defines a manifold of valid images 
- Problem: data manifold takes up tiny volume of ambient space
- Naive random samples (e.g. within [0,1]d) are always off manifold
- Solution: Sample from a Gaussian, then learn mapping to and from  manifold

We want to sample from the elusive
Image Manifold

We can sample from a
Gaussian Distribution

GAN

VAE
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Timeline

- VAEs preceded GANs. 
- In fact, GANs were motivated to fix some of the problems of VAEs. 
- VAEs are important to understand Diffusion Models 

Time

VAEs
[Kingma and Welling]

GANs
[Goodfella et al. ]

Diffusion Models
[Sohl-Dickstein et al. ]

2013 2014 2015
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Dimensionality Reduction

Want to map images    
to low-dimensional

Question: what properties 
should this mapping have?

Often for the purposes of 

● visualization
● extracting important features 

(for downstream tasks)
● representing meaningful 

relationships between samples
● In this lecture sampling!

Data is typically from a low dimensional distribution 
embedded in a much higher dimensional ambient space. 
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Principal Component Analysis (PCA)

● assumption: data manifold is a subspace 
●                             (a linear transformation)
●                             (reconstruction)
● capture as much variance as possible

Can be computed directly with linear algebra: 
take leading eigenvectors of (centered) scatter 
matrix XX’!

X W Z=

n × D
D × d

n × d

https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d/
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Autoencoders

encoder decoder

latent variable

Information 
Bottleneck

Question: What loss function should we use to learn e() and d()?
What happens if e(x) and d(z) are both linear functions?

e(x) d(z)

[Kramer, 1991]
Non-linear dimensionality reduction. 
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Autoencoders

encoder

e(Z|X)
decoderd(X|Z)

latent space

Information 
Bottleneck

Zebra Horse

Remember cycle 
consistency?

[Kramer, 1991]
Typical loss: Squared loss, or absolute loss
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Idea: Sampling from a trained Autoencoder

de

● GANs train the decoder with a 
discriminator

● VAEs ensure quality with 
○ Reconstruction loss
○ KL regularization (in a few slides)
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Idea: Sampling from a trained Autoencoder

encoder decoder

de

● GANs train the decoder with a 
discriminator

● VAEs ensure quality with 
○ Reconstruction loss
○ KL regularization (in a few slides)

Feed in noise, sampled 
from some distribution P(z)

Crucial insight:
We can amend latent space
so that it is easy to sample 

from it. 
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Autoencoder trained on MNIST:  latent space

Naive representation (without any special 
effort), not favorable:

● lots of empty space
● no symmetries between digit 

representations
● Not easy to sample in latent space
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reconstructed sample 

noise

new image? 

Naive sampling in latent space does not work
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Some Fundamentals
of probability and information

 Building Blocks:  

● Conditional and marginal probabilities
● Surprisal / Negative Log Likelihood
● Relative Entropy / KL Divergence
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Conditional and Marginal Probabilities
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Equation (2): Quick 60s Stats Puzzle

Prove that for any random variable X,Z.

Hint: Later this rule will come in handy. Remember it as “Equation (2)”. 
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Equivalences

surprisal Negative log-likelihood

log-likelihood
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KL Divergence  (a.k.a. relative entropy)

● non-negative 
● zero means same 
● not symmetric
● has many other, uniquely nice properties …

reality
(e.g., dataset)

model

( constant; does not 
depend on model q )Cross Entropy!
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KL Divergence

[ link to visualization ]

Varsha’s CoinJustin’s Coin

× 2

Question: 
Is it just as easy to mistake the output of Justin’s 
coin for that of Varsha’s coin, as vice versa?
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 Building Blocks:  

✅ Conditional and marginal probabilities
✅ Surprisal / Negative Log Likelihood
✅ Relative Entropy / KL Divergence

VAEs, 
Step 1: Make AutoEncoder probabilistic
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Reconstruction Loss, 
        using surprisal

How likely would it be to encode x, 
decode the result, and recover x? 

encoder

qφ(Z|X)
decoderp
θ(X’|Z)

ZX X’
Back to our AutoEncoder, 
but this time we make 
everything probabilistic!
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encoder

qφ(Z|X)
decoderp
θ(X’|Z)

ZX X’

Softmax gives us a 
multinomial distribution. 

But our latent space is not 
discrete i.e. {1, ... , c}, 
but continuous, ℝd!

Gaussian would be better …

softm
ax ?

So far we have used the 
softmax to get 
probabilities…
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Probabilistic Encoder (Gaussian)

encoder

qφ(Z|X)
Decoderp

θ(X’|Z)

de

mean

variance
Problem: backpropagation 
through sampling process?

sample
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The Reparameterization Trick

+sample
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The Reparameterization Trick

encoder

qφ(Z|X)

decoderp
θ(X’|Z)

d
e

sample

+

✅ gradients

s
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Probabilistic decoder (Gaussian)

encoder

qφ(Z|X)
decoderp
θ(X’|Z)

de

s
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Probabilistic decoder (Gaussian)

encoder

qφ(Z|X)
decoderp
θ(X’|Z)

de

s

Plugging the output distribution into the reconstruction loss, results in the squared loss. 30



Step 2: How do we sample in latent space?

How can we sample, if each sample has its own latent distribution?

μ2μ5

μ6

μ3

μ4

μ1 decoder

d

feed decoder 
(Gaussian) noise?
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Solution: Regularize all distributions to be close to the standard normal N(0;I).

μ2μ5

μ6

μ3

μ4

μ1

Z

p(z)
maximize

Step 2: How do we sample in latent space?
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Solution: Regularize all distributions to be close to the standard normal N(0;I).

μ2

μ5

μ6

μ3

μ4

μ1

Z

p(z)
maximize

Step 2: How do we sample in latent space?
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Solution: Regularize all distributions to be close to the standard normal N(0;I).

μ2

μ5

μ6

μ3

μ4

μ1

Z

p(z)

decoder

dSample from p(z)

maximize

Step 2: How do we sample in latent space?

34



Evidence Lower Bound (ELBO)

[Calvin Luo https://arxiv.org/abs/2208.11970]
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Evidence Lower Bound (ELBO)

(We are maximizing this lower bound.)

P(X)
pθ(x|z)

If we maximize pθ(x|z) and minimize the DKL we get close to P(x). 

[Calvin Luo https://arxiv.org/abs/2208.11970]
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Examples of VAE generated images
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a much nicer space…

can smoothly interpolate digits in 
a meaningful, digit-y kind of way
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a much nicer space
dimensions in latent space correspond to meaningful 
concepts, like sentiment and orientation

39



Back to MNIST: Visualizing latent space again

VAE Latent space, note the distribution is centered, and each digit has an equal portion
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The Biggest Drawback of VAEs
● Out of the box, generated images can be blurry.

https://borisburkov.net/2022-12-31-1/

Question:  Why? How do 
GANs fix this problem?

VAE v. GAN
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https://www.researchgate.net/figure/Images-generated-by-a-VAE-and-a-DCGAN-First-row-samples-from-a-VAE-Second-row-samples_fig9_305654682


Hierarchical VAEs

The generative process is modeled as a Markov chain, where each latent zt is 
generated only from the previous latent zt+1
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Summary

- Generative Image models learn a mapping from the Standard Normal 
Gaussian to the Image Manifold

- GANs learn this through a discriminator. 
- VAEs learn it through variational autoencoders 

- AutoEncoders learn to compress and reconstruct data
- VAEs make these AutoEncoders probabilistic

- Minimize the reconstruction loss
- Latent space is sampled from Gaussian distributions
- Sampling is made differentiable with the Reparameterization Trick 
- Deviations from the Prior (Standard Normal Gaussian) is penalized by KL divergence 

- The ELBO is a lower bound of P(X)
- Maximizing the ELBO, and minimizing the KL divergence makes P(x|z) close to P(x)
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