

Thanks to

Varsha Kishore
Justin Lovelace
Anissa Dallmann
Dylan Van Bramer

Logistics

- **HW2+P2** is due today!
- HW3+P3 will be released today. due 3/13/25 (only 1 week!)
- Quiz 3 Paper released. Paper: CLIP
- Final Project signups released today. Look out for Ed announcement.

Image Classification

Use self-supervised learning to learn embeddings for images

Vector Space

Discussion: Comparison of Loss Functions

Triplet:

$$l = \max(0, \frac{\sin(\mathbf{x}, \mathbf{x}^{-})}{\sin(\mathbf{x}, \mathbf{x}^{+})} - \sin(\mathbf{x}, \mathbf{x}^{+}) + c)$$

SimCLR loss:

$$l = -\log\left(\frac{\exp(\operatorname{sim}(\mathbf{x}, \mathbf{x}^+)/\tau)}{\exp(\operatorname{sim}(\mathbf{x}, \mathbf{x}^+)/\tau) + \exp(\operatorname{sim}(\mathbf{x}, \mathbf{x}^-)/\tau)}\right)$$

SimCLR

Algorithm 1 SimCLR's main learning algorithm.

```
input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
for sampled minibatch \{x_k\}_{k=1}^N do
    for all k \in \{1, \dots, N\} do
        draw two augmentation functions t \sim T, t' \sim T
        # the first augmentation
        \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
       \boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})
                                                                 # representation
        \boldsymbol{z}_{2k-1} = g(\boldsymbol{h}_{2k-1})
                                                                       # projection
        # the second augmentation
        \tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)
                                                                 # representation
        \boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})
                                                                       # projection
        \boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})
    end for
    for all i \in \{1, \dots, 2N\} and j \in \{1, \dots, 2N\} do
        s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|) # pairwise similarity
    end for
    define \ell(i,j) as \ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}
    \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
    update networks f and g to minimize \mathcal{L}
end for
return encoder network f(\cdot), and throw away g(\cdot)
```


Remember Transformers?

How can we use Transformers on Imagers?

Cornell Bowers C·IS

How to use Attention for Vision Tasks?

Attempt #1: Add attention to existing CNNs

Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 7794-7803).

How to use Attention for Vision Tasks?

Attempt #2: Adapt standard transformers to image data

f(x) = word embedding

"machine" x_1

Vector Space

"learning" \mathfrak{X}_2

 $f(x_3)$ $f(x_1)$

"awesome" \mathcal{X}_3

Can we extend this idea to images?

Machine learning is awesome

Idea1: Use pixels as input tokens

Discuss:

- How big would the attention matrix be for an RxR image?
- How much memory do we need for a 512x512 image, with 16 attention heads, and 48 layers for attention alone?
- What if the image was 32x32 pixels?

Idea2: use image patches as input tokens

 x_1 x_2

At a high level, these are both just fridges

Vector Space

Use image patches like words in a sentence!

f(x)= Vision Transformers

Vector Space

Adding positional embeddings

Adding positional embeddings

Adding positional embeddings

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv* preprint *arXiv*:2010.11929.

ViT Results

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv* preprint *arXiv*:2010.11929.

ViT Summary

Model:

- Model is almost identical to Transormers for text sequences
- Replace words with PxP pixel image patches, $P \in \{14, 16, 32\}$ (no overlap)
- Each patch is embedded linearly into a vector of size 1024
- 1D **learned** positional embeddings

Training:

- For pre-training, optimize for image classification on large supervised dataset (e.g. ImageNet 21K, JFT -300M)
- For fine-tuning, learn a new classification head on a small dataset (e.g. CIFAR-100)

ACTIVITY: When do ViTs outperform CNNs, and vice versa?

Think about what you know about transformers - what are some of their drawbacks?

When is it "worth it" to use transformers instead of just CNNs?

CNNs

- Translational invariance
 - Simple, proven architecture
 - Capture features at different scales
 - Required less data

ViTs

- Attention mechanisms
- Allow for multimodal data integration

Idea 3: Swim Transformers

Hierarchical architecture that has the flexibility to model at various scales

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings* of the IEEE/CVF international conference on computer vision (pp. 10012-10022).

Shifted Window attention

Linear computational complexity with respect to image size

Performance

method	image size	#param.	FLOPs	throughput (image / s)	ImageNet top-1 acc.
R-101x3 [38]	384 ²	388M	204.6G	-	84.4
R-152x4 [38]	480^{2}	937M	840.5G	97 — 93	85.4
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2
Swin-B	224 ²		15.4G	278.1	85.2
Swin-B	384 ²		47.0G	84.7	86.4
Swin-L	384 ²	197M	103.9G	42.1	87.3

Self-Supervised Vision Transformers (DiNO)

Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., & Joulin, A. (2021). Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF international conference on computer vision* (pp. 9650-9660).

Centering and sharpening

- Centering prevents one dimension from dominating
- Sharpening prevents learning a uniform distribution

$$\operatorname{softmax}(x)_i = \frac{e^{\frac{y_i}{T}}}{\sum_{j}^{N} e^{\frac{y_j}{T}}}$$

DINO v2

	INet-1k k-NN	INet-1k linear
iBOT	72.9	82.3
+(our reproduction)	$74.5 \uparrow 1.6$	$83.2 \uparrow 0.9$
+LayerScale, Stochastic Depth	$75.4 \uparrow 0.9$	$82.0 \downarrow 1.2$
+128k prototypes	$76.6 \uparrow 1.2$	$81.9 \downarrow 0.1$
+KoLeo	$78.9 \uparrow 2.3$	$82.5 \uparrow 0.6$
+SwiGLU FFN	$78.7 \downarrow 0.2$	$83.1 \uparrow 0.6$
+Patch size 14	$78.9 \uparrow 0.2$	$83.5 \uparrow 0.4$
+Teacher momentum 0.994	$79.4 \uparrow 0.5$	$83.6 \uparrow 0.1$
+Tweak warmup schedules	$80.5 \uparrow 1.1$	$83.8 \uparrow 0.2$
+Batch size 3k	$81.7 \uparrow 1.2$	$84.7 \uparrow 0.9$
+Sinkhorn-Knopp	81.7 =	84.7 =
+Untying heads $=$ DINOv2	$82.0 \uparrow 0.3$	$84.5 \downarrow 0.2$

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., ... & Bojanowski, P. (2023). Dinov2: Learning robust visual features without supervision. *arXiv preprint arXiv:2304.07193*.

Masked Autoencoders (MaE)

A simple self-supervised architecture, easy to use, with few hyper parameters. encoder decoder input target

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2022). Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition* (pp. 16000-16009).

Discuss: BERT is trained with cross entropy loss. What loss function should we use for MaE?

MaE Results

- Compared to supervised ViTs
 - Requires minimal data augmentation
 - Transfers better to downstream vision tasks
 - Object detection, segmentation

case	ft	lin	
none	84.0	65.7	
crop, fixed size	84.7	73.1	
crop, rand size	84.9	73.5	
crop + color jit	84.3	71.9	

(e) **Data augmentation**. Our MAE works with minimal or no augmentation.

		AP ^{box}		AP ^{mask}		
method	pre-train data	ViT-B	ViT-L	ViT-B	ViT-L	
supervised	IN1K w/ labels	47.9	49.3	42.9	43.9	
MoCo v3	IN1K	47.9	49.3	42.7	44.0	
BEiT	IN1K+DALLE	49.8	53.3	44.4	47.1	
MAE	IN1K	50.3	53.3	44.9	47.2	

Table 4. **COCO object detection and segmentation** using a ViT Mask R-CNN baseline. All entries are based on our implementation. Self-supervised entries use IN1K data *without* labels. Mask AP follows a similar trend as box AP.

f(x) = transformer rep.

CLIP (Contrastive Language-Image Pre-training)

Conde, M. V., & Turgutlu, K. (2021). CLIP-Art: Contrastive pre-training for fine-grained art classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 3956-3960).

Discuss: How can you train this model?

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
```

- Trained on 256 V100 GPUs for two weeks on 400 million (image, text pairs)
- On AWS, this would cost at least 200k dollars

```
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

Ranking using CLIP

sim score - 0.9

sim score - 0.3

sim score - 0.6

sim score - 0.1

Clip demo

https://huggingface.co/spaces/vivien/clip

Create dataset classifier from label text

SUN397 FOOD101 guacamole (90.1%) Ranked 1 out of 101 labels television studio (90.2%) Ranked 1 out of 397 a photo of a television studio. ✓ a photo of guacamole, a type of food. × a photo of ceviche, a type of food. × a photo of a podium indoor. x a photo of edamame, a type of food. × a photo of a conference room. x a photo of tuna tartare, a type of food. x a photo of a lecture room. × a photo of hummus, a type of food. × a photo of a control room. YOUTUBE-BB **EUROSAT** airplane, person (89.0%) Ranked 1 out of 23 annual crop land (12.9%) Ranked 4 out of 10 a photo of a airplane. × a centered satellite photo of permanent crop land. × a photo of a bird. x a centered satellite photo of pasture land. x a photo of a bear. × a centered satellite photo of highway or road. x a photo of a giraffe. a centered satellite photo of annual crop land. x a photo of a car. × a centered satellite photo of brushland or shrubland.

Application of CLIP

Audio Processing

Spectrogram:

- Energy, pitch, fundamental frequency

- Decomposes signal into frequencies and their

corresponding amplitudes

Spectrogram source: <u>Dumpala 2017</u>

0

1 [₹] 512 **>**

Audio as a vision problem

-10 dB

Most likely word sequence

Review

- Transformers can be used for vision tasks
 - Typically do not use convolution or other image specific architectures just flattened image patches
 - Consequently they require more data
 - However they are very flexible and can be used with other data modalities
 - Learn positional embedding

Swin transformers

- Learn features at different scales
- Scale linearly with the image size
- Are less popular because of their complexity

Self-supervised learning

- o Provides Transformer based models with the amount of data they need
- Often used as backbone pre-trained models
- Dino and MAE both learn very good embeddings

Multi-modality

- CLIP learns a common embedding for images and text
- Can be used to retrieve images or parts of images from plain text